
The Java Executors Utility Class

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand the implementation

of key methods in the Executors
utility class

3

The Java Executors
Utility Class

4See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

The Java Executors Utility Class
• Executors is a Java utility class

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

5

The Java Executors Utility Class
• Executors is a Java utility class

• A utility class is a final class
having only static methods, no
non-static state, & a private
constructor

See www.quora.com/What-is-the-best-way-to-write-utility-classes-in-Java/answer/Jon-Harley

http://www.quora.com/What-is-the-best-way-to-write-utility-classes-in-Java/answer/Jon-Harley

6

• It defines utility methods used by
Executor framework classes

The Java Executors Utility Class

7

• It defines utility methods used by
Executor framework classes, e.g.

• defaultThreadFactory() sets
new threads to a known state

public class Executors {

...

public static ThreadFactory

defaultThreadFactory() {

return new

DefaultThreadFactory();

}

The Java Executors Utility Class

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadFactory.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadFactory.html

8

• It defines utility methods used by
Executor framework classes, e.g.

• defaultThreadFactory() sets
new threads to a known state

• The defaultThreadFactory() is
used by these factory methods

The Java Executors Utility Class

9

• It defines utility methods used by
Executor framework classes, e.g.

• defaultThreadFactory() sets
new threads to a known state

• User-defined ThreadFactory
objects can be passed to other
factory methods in Executors

The Java Executors Utility Class

10

• It defines utility methods used by
Executor framework classes, e.g.

• defaultThreadFactory() sets
new threads to a known state

• User-defined ThreadFactory
objects can be passed to other
factory methods in Executors

• e.g., enables apps to create
custom thread subclasses,
priorities, etc.

The Java Executors Utility Class

11

• It defines utility methods used by
Executor framework classes, e.g.

• defaultThreadFactory() sets
new threads to a known state

• User-defined ThreadFactory
objects can be passed to other
factory methods in Executors

• Create a callable from a runnable

The Java Executors Utility Class
public class Executors {

...

public static Callable<Object>

callable(Runnable task){

...

return new RunnableAdapter

<Object>(task, null);

}

12

The Java Executors Utility Class
public class Executors {

...

public static Callable<Object>

callable(Runnable task){

...

return new RunnableAdapter

<Object>(task, null);

}

• It defines utility methods used by
Executor framework classes, e.g.

• defaultThreadFactory() sets
new threads to a known state

• User-defined ThreadFactory
objects can be passed to other
factory methods in Executors

• Create a callable from a runnable

class RunnableAdapter<T> implements Callable<T> {

final Runnable task; final T result;

RunnableAdapter(Runnable t, T r){ task = t; result = r; }

public T call() { task.run(); return result; }

}

See runtimeverification.com/monitor/annotated-java-8/java/util/concurrent/Executors.RunnableAdapter.html

https://runtimeverification.com/monitor/annotated-java-8/java/util/concurrent/Executors.RunnableAdapter.html

13

• It also defines factory methods to
make Executor thread pools

The Java Executors Utility Class

14

• It also defines factory methods to
make Executor thread pools

The Java Executors Utility Class

It can also create a thread pool with just one thread!

15

public class Executors {

...

public static ExecutorService

newFixedThreadPool(int nThreads,

ThreadFactory threadFactory){

return new ThreadPoolExecutor

(nThreads, nThreads,

0L, TimeUnit.MILLISECONDS,

new LinkedBlockingQueue

<Runnable>(),

threadFactory);

}

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

The Java Executors Utility Class

16

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Uses ThreadPoolExecutor class

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newFixedThreadPool(int nThreads,

ThreadFactory threadFactory){

return new ThreadPoolExecutor

(nThreads, nThreads,

0L, TimeUnit.MILLISECONDS,

new LinkedBlockingQueue

<Runnable>(),

threadFactory);

}

See earlier lesson on “Overview of Java ThreadPoolExecutor”

17

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Uses ThreadPoolExecutor class

• Core pool size & maximum
pool size are the same

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newFixedThreadPool(int nThreads,

ThreadFactory threadFactory){

return new ThreadPoolExecutor

(nThreads, nThreads,

0L, TimeUnit.MILLISECONDS,

new LinkedBlockingQueue

<Runnable>(),

threadFactory);

}

18

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Uses ThreadPoolExecutor class

• Core pool size & maximum
pool size are the same

• Idle threads don’t timeout

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newFixedThreadPool(int nThreads,

ThreadFactory threadFactory){

return new ThreadPoolExecutor

(nThreads, nThreads,

0L, TimeUnit.MILLISECONDS,

new LinkedBlockingQueue

<Runnable>(),

threadFactory);

}

19

public class Executors {

...

public static ExecutorService

newFixedThreadPool(int nThreads,

ThreadFactory threadFactory){

return new ThreadPoolExecutor

(nThreads, nThreads,

0L, TimeUnit.MILLISECONDS,

new LinkedBlockingQueue

<Runnable>(),

threadFactory);

}

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Uses ThreadPoolExecutor class

• Core pool size & maximum
pool size are the same

• Idle threads don’t timeout

• Threads can block on a
shared unbounded queue

The Java Executors Utility Class

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/LinkedBlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/LinkedBlockingQueue.html

20

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Uses ThreadPoolExecutor class

• Core pool size & maximum
pool size are the same

• Idle threads don’t timeout

• Threads can block on a
shared unbounded queue

• Threads can be created via
a custom ThreadFactory

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newFixedThreadPool(int nThreads,

ThreadFactory threadFactory){

return new ThreadPoolExecutor

(nThreads, nThreads,

0L, TimeUnit.MILLISECONDS,

new LinkedBlockingQueue

<Runnable>(),

threadFactory);

}

21

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Uses ThreadPoolExecutor class

• Core pool size & maximum
pool size are the same

• Idle threads don’t timeout

• Threads can block on a
shared unbounded queue

• Threads can be created via
a custom ThreadFactory

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newFixedThreadPool(int

nThreads) {

return new ThreadPoolExecutor

(nThreads, nThreads,

0L, TimeUnit.MILLISECONDS,

new LinkedBlockingQueue

<Runnable>());

}

A variant of newFixedThreadPool() uses DefaultThreadFactory

22

public class Executors {

...

public static ExecutorService

newCachedThreadPool

(ThreadFactory threadFactory){

return new ThreadPoolExecutor

(0, Integer.MAX_VALUE,

60L, TimeUnit.SECONDS,

new SynchronousQueue

<Runnable>(),

threadFactory);

}

...

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

The Java Executors Utility Class

23

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Uses ThreadPoolExecutor class

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newCachedThreadPool

(ThreadFactory threadFactory){

return new ThreadPoolExecutor

(0, Integer.MAX_VALUE,

60L, TimeUnit.SECONDS,

new SynchronousQueue

<Runnable>(),

threadFactory);

}

...

See earlier lesson on “Overview of Java ThreadPoolExecutor”

24

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Uses ThreadPoolExecutor class

• New threads started as needed,
but existing threads are reused

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newCachedThreadPool

(ThreadFactory threadFactory){

return new ThreadPoolExecutor

(0, Integer.MAX_VALUE,

60L, TimeUnit.SECONDS,

new SynchronousQueue

<Runnable>(),

threadFactory);

}

...

25

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Uses ThreadPoolExecutor class

• New threads started as needed,
but existing threads are reused

• Terminate & remove threads from
cache if unused for 60 seconds

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newCachedThreadPool

(ThreadFactory threadFactory){

return new ThreadPoolExecutor

(0, Integer.MAX_VALUE,

60L, TimeUnit.SECONDS,

new SynchronousQueue

<Runnable>(),

threadFactory);

}

...

26

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Uses ThreadPoolExecutor class

• New threads started as needed,
but existing threads are reused

• Terminate & remove threads from
cache if unused for 60 seconds

• execute() does a “rendezvous”
with a new worker thread

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newCachedThreadPool

(ThreadFactory threadFactory){

return new ThreadPoolExecutor

(0, Integer.MAX_VALUE,

60L, TimeUnit.SECONDS,

new SynchronousQueue

<Runnable>(),

threadFactory);

}

...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/SynchronousQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/SynchronousQueue.html

27

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Uses ThreadPoolExecutor class

• New threads started as needed,
but existing threads are reused

• Terminate & remove threads from
cache if unused for 60 seconds

• execute() does a “rendezvous”
with a new worker thread

• Threads can be created via custom ThreadFactory

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newCachedThreadPool

(ThreadFactory threadFactory){

return new ThreadPoolExecutor

(0, Integer.MAX_VALUE,

60L, TimeUnit.SECONDS,

new SynchronousQueue

<Runnable>(),

threadFactory);

}

...

28

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Uses ThreadPoolExecutor class

• New threads started as needed,
but existing threads are reused

• Terminate & remove threads from
cache if unused for 60 seconds

• execute() does a “rendezvous”
with a new worker thread

• Threads can be created via custom ThreadFactory

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newCachedThreadPool(){

return new ThreadPoolExecutor

(0, Integer.MAX_VALUE,

60L, TimeUnit.SECONDS,

new SynchronousQueue

<Runnable>());

}

...

A variant of newCachedThreadPool() uses DefaultThreadFactory

29

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Create work-stealing thread pools

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newWorkStealingPool

(int parallelism) {

return new ForkJoinPool

(parallelism,

ForkJoinPool

.defaultForkJoin

WorkerThreadFactory,

null,

true);

}

...

30

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Create work-stealing thread pools

• Implemented via ForkJoinPool

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newWorkStealingPool

(int parallelism) {

return new ForkJoinPool

(parallelism,

ForkJoinPool

.defaultForkJoin

WorkerThreadFactory,

null,

true);

}

...

See lessons on “Java ForkJoinPool”

31

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Create work-stealing thread pools

• Implemented via ForkJoinPool

• Set the target parallelism level

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newWorkStealingPool

(int parallelism) {

return new ForkJoinPool

(parallelism,

ForkJoinPool

.defaultForkJoin

WorkerThreadFactory,

null,

true);

}

...

32

• It also defines factory methods to
make Executor thread pools, e.g.

• Create fixed-sized thread pools

• Create variable-sized thread pools

• Create work-stealing thread pools

• Implemented via ForkJoinPool

• Set the target parallelism level

• etc.

The Java Executors Utility Class
public class Executors {

...

public static ExecutorService

newWorkStealingPool

(int parallelism) {

return new ForkJoinPool

(parallelism,

ForkJoinPool

.defaultForkJoin

WorkerThreadFactory,

null,

true);

}

...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#defaultForkJoinWorkerThreadFactory

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#defaultForkJoinWorkerThreadFactory

33

End of the Java Executors
Utility Class

