Managing the Java Thread Lifecycle:
Java Thread Interrupts vs.
Hardware/0S Interrupts

Douglas C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know various ways to stop Java threads

 Stopping a thread with an interrupt
request

« Understand differences between
a Java thread interrupt & a
hardware/OS interrupt

Interrupt Process (from three potential sources)

Hardware Processor Software
Interrupt Request Exception / Trap
1RQ) sent fom sent fom netnicion loaded
device to processor fo e -
PrOCESE0r PrOCessnr Y P

l

|

Processor halts
thread execution

h 4

Processor saves
thread state

h 4

Processor
executes interrupt
handler

h 4

Processor
resumes thread
execution

Java Thread Interrupts vs.
Hardware/OS Interrupts

Java Thread Interrupts vs Hardware/OS Interrupts

 Interrupts at the hardware or OS

. Interrupt Process (from three potential sources)
layers have several properties
Hardware Processar Software
Interupt Reguest Exception / Trap
RQ) sent from sant from ﬁ;’,}rﬁm";‘ggjﬁ
device to processorto by processor
PrOCESS0r prOCESS0r
[|
¥

Processor haltz
thread execution

!

Processor saves
thread state

¥

Processor
executes interrupt
handler

:

Processor
resumes thread
gxecution

See en.wikipedia.org/wiki/Interrupt & en.wikipedia.org/wiki/Unix_signal

http://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Unix_signal

Java Thread Interrupts vs Hardware/OS Interrupts
 Interrupts at the hardware or OS _
Iayers have several properties Interrupt Process (from three potential sources)

« Asynchronous

« Can occur essentially anytime
. Interupt Reguest Exception / Tra
& are independent of the et ot fom

(IR} sent fom sent fom Software Interrupt

. . . device to processorto instruction loaded
instruction currently running

pIOCESE0T PrOCESS0T by procasyy
[|

Y

Hardware Processor Software

Processor haltz
thread execution

!

Processor saves
thread state

¥

Processor
executes interrupt
handler

:

Processor
resumes thread
gxecution

See vujungle.blogspot.com/2010/12/differentiate-synchronous-and.html

http://vujungle.blogspot.com/2010/12/differentiate-synchronous-and.html

Java Thread Interrupts vs Hardware/OS Interrupts

 Interrupts at the hardware or OS
layers have several properties

« Asynchronous

« A program needn't test for
them explicitly since they
occur “out-of-band”

Interrupt Process (from three potential sources)

Hardware

Processor

Software

Interupt Reguest

Exception / Trap

Software Interrupt
ﬂﬂg} Sgenttfmm sent f"”"t instruction loaded
evice to feddsesl by processor
pIOCESE0T Processor
k J

Processor haltz
thread execution

!

Processor saves
thread state

¥

Processor
executes interrupt
handler

:

Processor
resumes thread

gxecution

Java Thread Interrupts vs Hardware/OS Interrupts
 Interrupts at the hardware or OS _
Iayers have several properties Interrupt Process (from three potential sources)

Hardware Processor Software

* Preemptive

Interupt Request Exception / Trap 5 oftware Intermupt
RO t fro t fro ; i
 Pause (& then later resume) the R By nsinuction loaded

. . B " by processor
execution of currently running) [-]
code without its cooperation

Y

Processor haltz
thread execution

!

Processor saves
thread state

¥

Processor
executes interrupt
handler

:

Processor
resumes thread
gxecution

See en.wikipedia.org/wiki/Preemption (computing)

https://en.wikipedia.org/wiki/Preemption_(computing)

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to
catch the UNIX SIGINT signal

void sig handler (int signo) {
if (signo == SIGINT)
printf ("received SIGINT\n");
}

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;

return O0;

}

See www.thegeekstuff.com/2012/03/catch-signals-sample-c-code

http://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to void sig_handler(int signo) {

catch the UNIX SIGINT signal if (S:i.gno == SIC.-}INT)
« It occurs asynchronously printf ("received SIGINT\n");
}

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;
The SIGINT interrupt is
typically generated by return O;
typing ~C in a UNIX shell }

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to
catch the UNIX SIGINT signal

« It preempts the current
instruction

void sig handler (int signo) ({
if (signo == SIGINT)
printf ("received SIGINT\n");
}

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;

return O0;

}

10

Java Thread Interrupts vs Hardware/OS Interrupts

 This example shows how to
catch the UNIX SIGINT signal

« It needn’t be tested
for explicitly

void sig handler (int signo) {
if (signo == SIGINT)
printf ("received SIGINT\n");
}

int main(void) {
if (signal (SIGINT, sig handler)
== SIG_ERR)
printf("can't catch SIGINT\n");

for (;;)
sleep (10) ;

return O0;

}

11

Java Thread Interrupts VS Hardware/OS Interrupts

« Asynchronous & preemptive
interrupt handling make it hard
to reason about programs

See en.wikipedia.org/wiki/Unix_signal#Risks

https://en.wikipedia.org/wiki/Unix_signal#Risks

Java Thread Interrupts vs Hardware/OS Interrupts

« Asynchronous & preemptive
interrupt handling make it hard Thread,
to reason about programs, e.g.
 Race conditions —S

of threads for it to operate properly

Race condlitions occur when a program
depends on the sequence or timing

Thread,

_>§ Shared State

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

Java Thread Interrupts vs Hardware/OS Interrupts

« Asynchronous & preemptive
interrupt handling make it hard
to reason about programs, e.g.

« Re-entrancy problems

A non-reentrant function cannot be R E' E N T RY
/

Interrupted in the middle of its execution
& then safely called again before its
previous invocations complete execution

See en.wikipedia.org/wiki/Reentrancy (computing)

https://en.wikipedia.org/wiki/Reentrancy_(computing)

Java Thread Interrupts vs Hardware/OS Interrupts

» Asynchronous & preemptive
interrupt handling make it hard
to reason about programs, e.g.

« Non-transparent restarts F \ J ’Z

e.g., an 1/0 operation returns the # of bytes transferred & it is
up to the application to check this & manage its own resumption
of the operation until all the bytes have been transferred

See en.wikipedia.org/wiki/PCLSRing#Unix-solution: restart on reguest

https://en.wikipedia.org/wiki/PCLSRing#Unix-solution:_restart_on_request

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread interrupts differ
from hardware or operating
system interrupts

Interrupt Process (from three potential sources)

Har Processor fiware
= equest Exception / Trap
Software Inte
(R g} - ¢ sent ﬁ'nmt instruction loa
evic processorto by proc r
prOCEessD: pPROCESE0r
P r halts
threa tion

Frocessor saves
thread state

¥

Processor
exgcutes interrupt
handler

rezumes thread
execution

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread interrupts differ

from hardware or operating Interrupt Process (from three potential sources)
system Interrupts, e.g. ol - o
 Delivery is synchronous &
non-preemptive rather the_an B S Excenkiiagy Sotuere e
asynchronous & preemptive b o by processor
- i.e., they don’t occur at an ‘
arbitrary point & don’t pause ,
(& later resume) running code threaSgQtion
Proces=zor saves
thread state
B
Processor
exgcutes interrupt
handler
resumes thread
execution

17

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread interrupts differ void processNonBlocking ()
from hardware or operating {
system interrupts, e.g.

while (true) {
. // Do some long-running
// computation
if (Thread.interrupted())

A program must test for throw new |
them explicitly InterruptedException() ;

18

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread interrupts differ void processNonBlocking ()
from hardware or operating {
system interrupts, e.g.

while (true) {
. // Do some long-running
// computation
if (Thread.interrupted())

- A program must test for throw new _
them explicitly InterruptedException() ;

* i.e., InterruptedException is
(usually) thrown synchronously
& is handled synchronously

19

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread interrupts differ
from hardware or operating
system interrupts, e.g.

Please

 Certain operations cannot
be interrupted

20

Java Thread Interrupts vs Hardware/OS Interrupts

- Java thread interrupts differ static class SleeperThread
from hardware or operating extends Thread ({
system interrupts, e.g. public void run() ({

int c;
try {

c = System.in.read();

}

 Certain operations cannot
be interrupted, e.q.

 Blocking I/O calls that aren't invoked
on “interruptable channels”

See bugs.java.com/bugdatabase/view bug.do?bug id=4514257

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4514257

Java Thread Interrupts vs Hardware/OS Interrupts

« Java thread intel‘l‘upts differ void someMethod () {
from hardware or operating synchronized (this) ({
system interrupts, e.g.

}
}

synchronized void anotherMethod()

{

 Certain operations cannot }

be interrupted, e.q.

« Waiting to acquire an “intrinsic lock”

See stackoverflow.com/questions/32024436/why-cant-
thread-interrupt-interrupt-a-thread-trying-to-acquire-lock

https://stackoverflow.com/questions/32024436/why-cant-thread-interrupt-interrupt-a-thread-trying-to-acquire-lock

End of Managing the Java
Thread Lifecycle: Java
Thread Interrupts vs.

Hardware/OS Interrupts

23

