Managing the Java Thread Lifecycle:
Patterns of Handling Thread Interrupts

Douglas C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know various ways to stop Java threads

 Stopping a thread with an interrupt
request

« Learn the patterns of handing
Java thread interrupts

Java theory and practice: Dealing with InterruptedException
You caught it, now what are you going to do with it?

Many Jawa™ language methods, such as Thread. sleep() and Object.wait(D, throw ™ Eriz
InterruptedException. You can'tignore it because it's & checked exception, but what 23 May 2008

should you do with it? In this month's Java theory and practice, concurrency expert Brian

G ; rapt wl \ Also available in Chiness
Goetz explains what InterruptedException means, why it is thrown, and what you should do

when you catch one.

z, Principal Consultant, Cuioti:

dapanese

+# Table of contents

B FOF (128 KB} | E Comments

This story is probably familiar: Y¥ou're writing a test program and you need to pause for some amount of time, so you call Thread.s Teep (3.
But then the compiler or IDE balks that you haven't dealt with the checked Interruptedsxcept ion. Whatis InterruptedException, and
why do you have to deal with it?

The most common response te InterruptedException is to swallow it -- catch it and do nothing (or perhaps log it, which isn't any better) --
as we'll see later in Listing 4. Unfortunately, this approach throws away important information about the fact that an interrupt ocourred, which
could compromise the application's ability to cancel activities or shut down in a timely manner.

Blocking methods

‘When a method throws InterruptedException, it is telling you several things in addition to the fact that it can throw & particular checked
exception. It is telling you that it is a blocking method and that it will make an attempt to unblock and return early -- if you ask nicely.

A blocking method is different from an ordinary method that just takes a long time to run. The completion of an ordinary methed is dependent
only on how much work you've asked it to do and whether adeguate computing resources (CPU cycles and memory) are svailable. The
completion of a blocking method. on the other hand, is also dependent on some external event, such as timer expiration, 1/0 completion, or the
action of another thread (releasing a lock, sefting a flag. or placing a task on a work queue). Ordinary methods complete as scon as their wark
can be done, but blocking methods are less predictable because they depend on external events. Blocking methods can compromise
responsivensss because it can be hard to predict when they will complete.

Becausza blocking methods can potentially take forever if the event they are waiting for never ocours, it is often useful for blocking operations to
be cancelabl

{ltis often useful for long-running non-blocking methods to be cancelable as well.) A cancelsble operation s one that can be
externally moved to completion in advance of when it would ordinarily complete on its own. The interruption mechanism provided by Thread
and supported by Thread. s 1eep () and Ob j
stop what it is doing early. When a method throws Interruptedsxception. itis teling you that if the thread executing the method is
interrupted. it will make an sttempt to stop what it is deing and return early and indicate its eary return by throwing InterruptedException.
‘Well-behaved blocking Ebrary methods should be responsive to interruption and throw InterruptedException sothey can be used within
cancelable activities without compromising responsiveness.

t.wait {} is a cancellation mechanism; it allows one thread to request that ancther thread

Thread interruption

Every thread has s Boolean property sssociatad with it thet represents its interupted sfatuz. The interrupted status is initially false: whan s
thread is interrupted by some other thread through a call to Thread. interrupt {2, one of two things happens. If that thread is executing a
low-level interruptible blocking methed like Thread. s Teep (3, Thread. join (), or Object. wait (). it unblocks and throws
Interruptedsxception. Otherwise, interrupt () merely sets the thread's interruption status. Code running in the interrupted thread can
later poll the interrupted status to see if it has been requested 1o stop what it is doing; the interrupted ststus can be read with

Thread. is Interrupted() and can be read and cleared in & single operation with the poorly named Thread. interrupted().

Interruption is a cooperative mechanism. When one thread interrupts another, the interrupted thread does not necessarily stop what it is deing
immediately. Instead, interruption is & way of politely asking another thread to stop what it is doing if it wants to, at its convenience. Some
methods, like Thread. sTeap (), take this request serously, but methods are not required to pay sttention to interruption. Methods that do not
block but that still may take a long time to execute can respect requests for interruption by polling the interrupted status and return early i
interrupted. You are free to ignore an interruption request, but doing so may compromise responsiveness.

One of the benefits of the cooperative nature of interruption is that it provides more flexibility for safely constructing cancelable activities. We
rarely want an activity to stop immediately; program data structures could be left in an inconsistent state if the acti were canceled mid-
update. Interruption allows a cancelable activity to clean up any work in progress, restore invariants, notify other activities of the cancellation,

Patterns of Handling Java
Thread Interrupts

Patterns of Handling Java Thread Interrupts

« Recall that blocking operations void processBlocking(String args) ({
in Java can return automatically
& throw InterruptedException while (true) {

if the thread is interrupted try {
Thread.currentThread() .

sleep (interval) ;
synchronized (this) {
while (someConditionFalse)
wait();
}
}

catch (InterruptedException e)

{ ...}

See earlier part of the lesson on “Stopping a Thread via an Interrupt’

Patterns of Handling Java Thread Interrupts

¢ There are patterns for dea"ng Java theory and practice: Dealing with InterruptedException

You caught it, now what are you going to do with it?

w/Java InterruptedException e U S S

InterruptedException. You can't ignore it because it's a checked exception, but what 23 May 2009

tz, Principal Consultant, Quictx

should you do with it? In this month's fava theorny and practice, concurrency expert Brian i . . _—
Goetz suplaing what Interrspte dExcaption means, why it is thrown, and what you should go /5% @vaiable in Chinsss Sussian Japaness
when you caich one.

+ Table of contents
188 KB} | B Comm

This story is probably familiar: Y ou're writing a test pregram and you need to pause for some amount of time, so you call Thread. s Teep (3.
But then the compiler or IDE balks that you haven't dealt with the checked Interrupteds xception. Whatis InterruptedException, and
why do you have to deal with it?

The most common response to InterruptedException is to swallow it -- catch it and do nothing (or perhaps log it, which isn't any better) --
as we'll see later in Listing 4. Unfortunately, this approach throws sway important information about the fact that an interrupt occurned, which
could compromise the application's ability to cancel activities or shut down in a fimely manner.

Blocking methods

When a method throws Interruptedsxception, itis telling you several things in addition to the fact that it can throw a particular checked
exception. 1t is telling you that it is & blocking method and that it will make an attempt to unblock and return early -- if you ask nicsly.

A blocking methed is different from an ordinary method that just takes a long time to run. The completion of an ordinary method is dependent
only on how much work you've asked it to do and whether adequate computing resources (CPU cycles and memary) are available. The
completion of a blocking methed, on the ether hand, is also dependent on some extennal event, such as timer expiration, 1/ completion, or the
sction of another thread (releasing a lock, setting & flag, or placing & task on a work queue). Ordinary methods complete as soon as their work
can be done, but blocking methods are less predictable becsuse they depend on external evenis. Blocking methods can compromise
responsivensss becsuse it can be hard to predict when they will complete.

Because blocking methods can potentislly take forever if the event they are waiting for never ocours, it is often useful for blocking operations to
be canceiable. (It is often useful for long-running non-blocking methods to be cancelsble as wel.) A cancelable operation is one that can be
externally moved to completion in advance of when it would erdinarily complete on its own. The interruption mechanism provided by Thread
and supported by Thread. s Teep {3 and Object. wait {} is a cancellation mechanism; it allows one thread to request that ancther thread
stop what it is doing early. When a method throws Interruptedsxception, itis telling you that if the thread executing the method is
interrupted, it will make an attempt to stop what it is deing and return early and indicate its early return by throwing InterruptedSxception.
Well-behaved blocking Bbrary methods should be responsive to interruption and throw InterruptedException so they can be used within
cancelable acfivities without compromising responsiveness.

Thread interruption

Ewvery thread has a Boolean property sssociated with it that represents its inferupted sfafus. The interrupted status is initially false; when a
thread is interrupted by some other thread through a call to Thread. interrupt (). one of two things happens. If that thread is executing a
low-level interruptible blocking method like Thread. s Teep (), Thread. join(), orObject.wait (]}, it unblocks and throws
Intarruptedsxcept ion. Otherwise, interrupt () merely sets the thread’s interruption status. Code running in the interrupted thread can
later poll the interrupted status to ses if it has been requested to stop what it is doing; the interrupted status can be read with

Thread. is Interrupted{) and can be read and cleared in a single operation with the poorly named Thread. interrupted{d.

Interrugtion is 8 cooperative mechanism. When one thread interrupts ancother, the interrupted thread does net necessarly stop what it is doing
immediately. Instead, interruption is & way of politely asking another thread to stop what it is doing if it wants to, at its convenience. Some
methods, like Thread. s Teap (). take this request seriously, but methods are not required to pay attention to interruption. Methods that do not
block but that still may take a long time to execute can respect requests for interruption by polling the interrupted status and return eardy i
interrupted. You are free to ignore an interruption request, but doing so may compromise responsiveness.

One of the benefits of the cooperstive nature of interruption is that it provides more flexibility for safely constructing cancelable activites. We
rarely want an activity to stop immediately; program data structures could be left in an inconsistent state if the activity were canceled mid-
update. Interruption allows a cancelable activity to clean up any work in progress, restore invarants. notify other activities of the cancellation,

See www.ibm.com/developerworks/java/library/j-jtp05236/index.htmi?ca=drs-

http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html?ca=drs-

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing public class StringBlockingQueue {
w/Java InterruptedException, e.g. private BlockingQueue<String>

. eue = new
* Propagate InterruptedException g‘ilnke dBlockingQueue<String> () ;
to callers by not catching it

public void put(String s)
throws InterruptedException {
queue.put(s) ;
}

public String take()
throws InterruptedException {
return queue. take();

}

See docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

Patterns of Handling Java Thread Interrupts

There are patterns for dealing public class StringBlockingQueue {
w/Java InterruptedException, e.g. private BlockingQueue<String>

. eue = new
* Propagate InterruptedException g‘ilnke dBlockingQueue<String> () ;
to callers by not catching it

public void put(String s)
throws InterruptedException {
queue.put(s) ;
}

_7'he exception if e"'xp//cit/y //'stec{/ public String take ()
in each methods "throw dlause”| ——_ .}, ows Interru ptedException {

return queue. take();

}
}

See docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing public class StringBlockingQueue {
w/Java InterruptedException, e.g. private BlockingQueue<String>

. eue = new
* Propagate InterruptedException g‘ilnke dBlockingQueue<String> () ;
to callers by not catching it

public void put(String s)
throws InterruptedException {
queue.put(s) ;
}

BlockingQueue put() & take()
throw exceptions that are not public String take()
caught by StringBlockingQueue \ throws InterruptedException ({
return queue. take();

}
}

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing public class StringBlockingQueue {
w/Java InterruptedException, e.g. private BlockingQueue<String>

. eue = new
* Propagate InterruptedException g‘ilnke dBlockingQueue<String> () ;
to callers by not catching it

public void put(String s)
throws InterruptedException {
queue.put(s) ;
}

public String take()
throws InterruptedException {
return queue. take();

}

StringBlockingQueue s =
new StringBlockingQueue () ;

try { }
String str = s.take();

.. It’s now the caller’s responsibility
} catch (InterruptedException e) to handle the exception properly

}

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing try {

w/Java InterruptedException, e.g. while (!waiter.mReleased)
waiter.wait () ;

}
catch (InterruptedException e) {

« Perform task-specific cleanup synchronized (this) ({

before rethrowing boolean removed =
mWaitQueue.remove (waiter) ;

if (!'!removed)
release() ;

}

throw e;

}
- Avord leaking resources or leaving
resources in an inconsistent state

10

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing try {

w/Java InterruptedException, e.g. while (!waiter.mReleased)
waiter.wait () ;

}
catch (InterruptedException e) {

 Perform task-specific cleanup synchronized (this) ({

before rethrowing boolean removed =
mWaitQueue.remove (waiter) ;

if (!'removed)
release() ;

}

throw e;

’ .

Rethrow the InterruptedException

11

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing public void doWork() ({

w/Java InterruptedException, e.q. try {
while (true) {

Runnable r =
queue. take (10, SECONDS) ;
r.run() ;

}

}

« Restore interrupted status after catch (InterruptedException e) |

catching InterruptedException

Thread.currentThread ()
.interrupt() ;

Preserve evidence the exception occurred
for use by higher levels of the call stack

See daniel.mitterdorfer.name/articles/2015/handling-interruptedexception

http://daniel.mitterdorfer.name/articles/2015/handling-interruptedexception

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing public boolean gaze() {

w/Java InterruptedException, e.q. try {
int sleepTime = 1000 +

mRandom.nextInt (4000;

Thread.sleep (sleepTime) ;
return true;

}

catch (InterruptedException e) {
return false;

« Handle interrupt & “swallow” it }

13

Patterns of Handling Java Thread Interrupts

« There are patterns for dealing public boolean gaze() {

w/Java InterruptedException, e.g. try {
int sleepTime = 1000 +

mRandom.nextInt (4000;

Thread.sleep (sleepTime) ;
return true;

}

catch (InterruptedException\e) {
return false;

« Handle interrupt & “swallow” it }

e.g., often done when the thread
sleep() or join() methods are called

General-purpose reusable library code should never swallow
interrupt requests entirely (i.e., this is an “anti-pattern”)

End of Managing the Java
Thread Lifecycle: Patterns of
Handling Thread Interrupts

15

