
Maximizing Processor Core Utilization

with the Java Common Fork-Join Pool

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how the common fork-join pool
helps to maximize processor core utilization

Learning Objectives in this Part of the Lesson

Common Fork-Join Pool

3

Overview of the
Common Fork-Join Pool

4

• A static common pool is available
& appropriate for most programs

Overview of the Common Fork-Join Pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool--

5

• A static common pool is available
& appropriate for most programs

• This pool’s used by any ForkJoin
Task that’s not submitted to a
specified pool within a process

Overview of the Common Fork-Join Pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool--

6

• A static common pool is available
& appropriate for most programs

• This pool’s used by any ForkJoin
Task that’s not submitted to a
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process

Overview of the Common Fork-Join Pool

7

• A static common pool is available
& appropriate for most programs

• This pool’s used by any ForkJoin
Task that’s not submitted to a
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.

• Goal is to maximize processor
core utilization via work-stealing

Overview of the Common Fork-Join Pool

See earlier lessons on “The Java Fork-Join Pool Internals: Work Stealing”

8

• A static common pool is available
& appropriate for most programs

• This pool’s used by any ForkJoin
Task that’s not submitted to a
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.

• Goal is to maximize processor
core utilization via work-stealing

• This “global” vs “local” resource
management tradeoff is common
in computing & other domains

Overview of the Common Fork-Join Pool

See blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

http://blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

9

• A static common pool is available
& appropriate for most programs

• This pool’s used by any ForkJoin
Task that’s not submitted to a
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.

• This pool is also used by the Java
parallel streams framework

See dzone.com/articles/common-fork-join-pool-and-streams

Overview of the Common Fork-Join Pool

filter(not(this::urlCached))

collect(toList())

…

map(this::downloadImage)

flatMap(this::applyFilters)

https://dzone.com/articles/common-fork-join-pool-and-streams

10

• A static common pool is available
& appropriate for most programs

• This pool’s used by any ForkJoin
Task that’s not submitted to a
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.

• This pool is also used by the Java
parallel streams framework

• & the completable futures
framework

See dzone.com/articles/common-fork-join-pool-and-streams

Overview of the Common Fork-Join Pool

/page\ =

supplyAsync

(getStartPage())

/imgNum\ = /page\

.thenComposeAsync

(crawlHyperLinks

(page))

/imgNum\ = /page\

.thenApplyAsync

(countImages(page))

.thenApply(List::size)

/imgNum1\.thenCombine(/imgNum2\,

(imgNum1, imgNum2) ->

Integer::sum)

Task 1

Task 2 Task 3

Task 4

https://dzone.com/articles/common-fork-join-pool-and-streams

11

• By default the common fork-join pool has one less thread than the # of cores

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors

ForkJoinPool makeCommonPool() {

...

parallelism = Runtime

.getRuntime()

.availableProcessors() – 1;

...

Overview of the Common Fork-Join Pool

Sets ‘parallelism’ to three
on a quad-core processor

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors--

12

• By default the common fork-join pool has one less thread than the # of cores

See github.com/douglascraigschmidt/LiveLessons/blob/master/SearchForkJoin

System.out.println

("The parallelism in the"

+ "common fork-join pool is "

+ ForkJoinPool

.getCommonPoolParallelism());

Overview of the Common Fork-Join Pool

ForkJoinPool makeCommonPool() {

...

parallelism = Runtime

.getRuntime()

.availableProcessors() – 1;

...

Returns three on a quad-core processor

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchForkJoin

13

• By default the common fork-join pool has one less thread than the # of cores

A program can therefore leverage all processor cores!

Overview of the Common Fork-Join Pool

The invoking thread, e.g., the main (UI)
thread, is also included in the pool

14

• However, the default # of threads in the fork-join pool may be inadequate

Overview of the Common Fork-Join Pool

15

• However, the default # of threads in the fork-join pool may be inadequate

• e.g., problems occur when blocking operations
are used in the common fork-join pool

These problems may range from underutilization of processor cores to deadlock..

e.g., downloading more
images than # of cores

Overview of the Common Fork-Join Pool

16

• The common pool size can thus be expanded & contracted programmatically

Overview of the Common Fork-Join Pool

17

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property String desiredThreads = "10";

System.setProperty

("java.util.concurrent." +

"ForkJoinPool.common." +

"parallelism",

desiredThreads);

Overview of the Common Fork-Join Pool

It’s hard to estimate the total # of threads to set in the common fork-join pool

18

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

• Modifying this property affects
all common fork-join usage in
a process!

Overview of the Common Fork-Join Pool

String desiredThreads = "10";

System.setProperty

("java.util.concurrent." +

"ForkJoinPool.common." +

"parallelism",

desiredThreads);

19

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

• Modifying this property affects
all common fork-join usage in
a process!

• This property can be changed
only before the common fork-join
pool is initialized

• It’s initialized “on-demand”
the first time it’s used

Overview of the Common Fork-Join Pool

String desiredThreads = "10";

System.setProperty

("java.util.concurrent." +

"ForkJoinPool.common." +

"parallelism",

desiredThreads);

See en.wikipedia.org/wiki/Lazy_initialization

https://en.wikipedia.org/wiki/Lazy_initialization

20

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

Overview of the Common Fork-Join Pool

String desiredThreads = "10";

System.setProperty

("java.util.concurrent." +

"ForkJoinPool.common." +

"parallelism",

desiredThreads);

Another approach is thus needed to increase the fork/join pool size automatically

21See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

• By using a ManagedBlocker

Overview of the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

22

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

• By using a ManagedBlocker

• Temporarily add worker threads
to the common fork-join pool

Overview of the Common Fork-Join Pool

23

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

• By using a ManagedBlocker

• Temporarily add worker threads
to the common fork-join pool

• Useful when tasks wait on I/O,
synchronizers, or blocking queues

Overview of the Common Fork-Join Pool

ManageBlockers can only be used with the common fork-join pool..

24

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

• By using a ManagedBlocker

• Temporarily add worker threads
to the common fork-join pool

• Useful when tasks wait on I/O,
synchronizers, or blocking queues

• It’s helpful to encapsulate the
ManagedBlocker mechanism

Overview of the Common Fork-Join Pool

SupplierManagedBlocker<T> mb =

new SupplierManagedBlocker<>

(supplier);

...

ForkJoinPool.managedBlock(mb);

return mb.getResult();

See lesson on “The Java Fork-Join Pool: Applying the ManagedBlocker Interface”

25

• The common pool size can thus be expanded & contracted programmatically

• By modifying a system property

• By using a ManagedBlocker

• Temporarily add worker threads
to the common fork-join pool

• Useful when tasks wait on I/O,
synchronizers, or blocking queues

• It’s helpful to encapsulate the
ManagedBlocker mechanism

• ForkJoinPool reclaims threads
during periods of non-use &
reinstates them on later use

Overview of the Common Fork-Join Pool

26

End of Maximizing Processor
Core Utilization with the

Java Common Fork-Join Pool

