The Java ForkloinTask Class

Douglas G. Schmidt
d.schmidt@vanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

V

Nashuville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize the structure & functionality of the fork-join framework

<<Java Class>>
& ForkJoinTask<V>

<<Java Interface>> | @@ o S
&3 Executor

T

<<Java Interface>>

&3 ExecutorService

s

<<Java Class>>
& RecursiveAction

<<Java Class>> “compute():void

& AbstractExecutorService <<Java Class>>
& RecursiveTask<V>
T 'compute()

<<Java Cl?SS>> ______________ | <<Java Class>>
(& ForkJoinPool (& CountedCompleter<T>
~completer

&'compute():void jo 1

Overview of the
ForkJoinTask Class

Overview of the ForkJoinTask Class

« A ForkJoinTask associates a
chunk of data along with a
computation on that data

Class ForkjJoinTask<V>

java.lang.Object
java.util.concurrent.ForkjJoinTask<V>

All Implemented Interfaces:

Serializable, Future<V>

Direct Known Subclasses:

CountedCompleter, RecursiveAction, RecursiveTask

public abstract class ForkJoinTask<V>
extends Object
implements Future<V>, Serializable

Abstract base class for tasks that run within a ForkJoinPool. A ForkJoinTask is a thread-like
entity that is much lighter weight than a normal thread. Huge numbers of tasks and subtasks
may be hosted by a small number of actual threads in a ForkJoinPool, at the price of some usage
limitations.

A "main" ForkJoinTask begins execution when it is explicitly submitted to a ForkJoinPool, or,
if not already engaged in a ForkJoin computation, commenced in the
ForkJoinPool.commonPool() via fork(), invoke(), or related methods. Once started, it will
usually in turn start other subtasks. As indicated by the name of this class, many programs
using ForkJoinTask employ only methods fork() and join(), or derivatives such as
invokeAll. However, this class also provides a number of other methods that can come into
play in advanced usages, as well as extension mechanics that allow support of new forms of
fork/join processing.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Overview of the ForkJoinTask Class

« A ForkJoinTask associates a
chunk of data along with a
computation on that data

 This enables fine-grained
data parallelism

Class ForkjJoinTask<V>

java.lang.Object
java.util.concurrent.ForkjJoinTask<V>

All Implemented Interfaces:

Serializable, Future<V>

Direct Known Subclasses:

CountedCompleter, RecursiveAction, RecursiveTask

public abstract class ForkJoinTask<V>
extends Object
implements Future<V>, Serializable

Abstract base class for tasks that run within a ForkJoinPool. A ForkJoinTask is a thread-like
entity that is much lighter weight than a normal thread. Huge numbers of tasks and subtasks
may be hosted by a small number of actual threads in a ForkJoinPool, at the price of some usage
limitations.

A "main" ForkJoinTask begins execution when it is explicitly submitted to a ForkJoinPool, or,
if not already engaged in a ForkJoin computation, commenced in the
ForkJoinPool.commonPool() via fork(), invoke(), or related methods. Once started, it will
usually in turn start other subtasks. As indicated by the name of this class, many programs
using ForkJoinTask employ only methods fork() and join(), or derivatives such as
invokeAll. However, this class also provides a number of other methods that can come into
play in advanced usages, as well as extension mechanics that allow support of new forms of
fork/join processing.

See www.dre.Vanderbilt.edu/~schmidt/PDF/DataParallelismIn]ava.pdf |

http://www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf

Overview of the ForkJoinTask Class

A ForkJoinTask is lighter weight than a Java thread

ForkJoinTask

Thread

e.g., it doesn’t maintain its own run-time stack, registers, thread-local storage, etc.

Overview of the ForkJoinTask Class

A ForkJoinTask is lighter weight than a Java thread

« Alarge # of ForkJoinTasks can . S ForkJoinTasks

- . % _.

thus run in a small # of worker =5 < P
threads in a fork-join pool € £ £

=< -2 =

Overview of the ForkJoinTask Class

A ForkJoinTask is lighter weight than a Java thread

* A large # of ForkJoinTasks can 5§ ForkloinTasks _g
thus run in a small # of worker -5 :
threads in a fork-join pool £

£ % s

Thread

Program Counter o

Stack Native Stack

(R
/ !

Each worker thread has its
own stack, registers, etc.

See blog.jamesdbloom.com/JVMlInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

Overview of the ForkJoinTask Class

* A ForkJoinTask has two methods that o 30inTask fork()
control parallel processing/merging <7

Parent ForkJoinTask
Vv join()

join () join()

fork () fork ()

Child ForkJoinTasks

Overview of the ForkJoinTask Class

* A ForkJoinTask has two methods that o 30inTask fork() — Arranges to

control parallel processing/merging <> asynchronously execute this

Parent ForkJoinTask task in the appropriate pool

join () join()

fork () fork ()

ForkJoinTask

Child ForkJoinTasks

fork() is a lightweight variant of Thread.

start() that creates a child ForkJoinTask

Overview of the ForkJoinTask Class

* A ForkJoinTask has two methods that o 30inTask fork() — Arranges to

control parallel processing/merging <T> asynchronously execute this
task in the appropriate pool

Parent ForkJoinTask
join () join () WorkQueue WorkQueue WorkQueue
Sub-Task; ;
Sub-Task; ,
fork () fork() Sub-Task, 5 Sub-Task; 5
Sub-Task; 4 _| Sub-Task,, Sub-Taskg 4
.push () T
< ¢
Child ForkJoinTasks 9 pool of worker threa®®

fork() doesnt run the task, but places it on a work queue in the calling worker thread

Overview of the ForkJoinTask Class

A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask
Vv join() — Returns result of
computation when it is done
join() join()
fork () fork ()
Jjoin() returns the result of a child
task to the parent task that forked it

Child ForkJoinTasks

12

Overview of the ForkJoinTask Class

A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask
Vv join() — Returns result of
computation when it is done
join () join () Unlike Thread.join(), ForkJoinTask.join()
doesn’t simply block the calling thread
fork () fork ()
Child ForkJoinTasks

13

Overview of the ForkJoinTask Class

A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask
Vv join() — Returns result of
computation when it is done
join () join () Unlike Thread.join(), ForkJoinTask.join()
doesn’t simply block the calling thread
fork() fork() - It uses a worker thread to run tasks
Child ForkJoinTasks

It “pitches in” via the “Collaborative Jiffy Lube” model of processing!

Overview of the ForkJoinTask Class

A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask
Vv join() — Returns result of

computation when it is done

join () join () Unlike Thread.join(), ForkJoinTask.join()
doesn’t simply block the calling thread

fork () fork ()

« When a worker thread encounters a

join() it processes other tasks until it
notices the target sub-task is done

Child ForkJoinTasks

15

Overview of the ForkJoinTask Class
 ForkJoinPool enables non-ForkJoinTask clients to process ForkJoinTasks

void execute(ForkJoinTask<T>) — Arrange async execution
T invoke(ForkJoinTask<T>) — Performs the given task,
returning its result upon completion

ForkJoinTask submit(ForkJoinTask) — Submits a ForkJoinTask for
<T> execution, returns a future

See upcoming lesson on “ 7he Java Fork-Join Pool: Key Methods in ForkJoinPool”

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-

Overview of the ForkJoinTask Class

 Clients insert new fork-join tasks onto a fork-join pool’s shared queued, which
feeds “work-stealing” queues managed by worker threads

. WorkQueue WorkQueue WorkQueue
ForkJoinPool Q Q Q
Sub-Task; ,
Sub-Task; 3 Sub-Task; 5
Sub-Task, 4 Sub-Task; 4

Shared Queue

v

execute ()
Clients invoke ()
submit ()

. f‘p°°’ of worker threa®®

See en.wikipedia.org/wiki/Work stealing ‘

https://en.wikipedia.org/wiki/Work_stealing

Overview of the ForkJoinTask Class

 Clients insert new fork-join tasks onto a fork-join pool’s shared queued, which
feeds “work-stealing” queues managed by worker threads

» The goal of “work-stealing” is to
maximize processor core utilization

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

End of the Java
ForkJoinTask Class

19

