Douglas G. Schmidt
d.schmidt@vanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

V

Nashuville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand how the Java fork-join framework processes tasks in parallel

Overview of the Java
Fork-Join Pool
Computation Model

3

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

Class ForkjoinPool

java.lang.Object
java.util.concurrent.AbstractExecutorService
java.util.concurrent.ForkjoinPool

All Implemented Interfaces:

Executor, ExecutorService

public class ForkJoinPool
extends AbstractExecutorService

An ExecutorService for running ForkJoinTasks. A ForkJoinPool provides the entry point for submissions from non-ForkJoinTask clients, as well as management and monitoring
operations.

A ForkJoinPool differs from other kinds of ExecutorService mainly by virtue of employing work-stealing: all threads in the pool attempt to find and execute tasks submitted to the pool
and/or created by other active tasks (eventually blocking waiting for work if none exist). This enables efficient processing when most tasks spawn other subtasks (as do most
ForkJoinTasks), as well as when many small tasks are submitted to the pool from external clients. Especially when setting asyncMode to true in constructors, ForkJoinPools may also be
appropriate for use with event-style tasks that are never joined.

A static commonPool () is available and appropriate for most applications. The common pool is used by any ForkJoinTask that is not explicitly submitted to a specified pool. Using the
common pool normally reduces resource usage (its threads are slowly reclaimed during periods of non-use, and reinstated upon subsequent use).

For applications that require separate or custom pools, a ForkJoinPool may be constructed with a given target parallelism level; by default, equal to the number of available processors.
The pool attempts to maintain enough active (or available) threads by dynamically adding, suspending, or resuming internal worker threads, even if some tasks are stalled waiting to join
others. However, no such adjustments are guaranteed in the face of blocked I/O or other unmanaged synchronization. The nested ForkJoinPool.ManagedBlocker interface enables
extension of the kinds of synchronization accommodated.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

« Its parallel computing engine is used by many higher-level frameworks

Parallel Streams Completable Futures

| HEEEEE---[] | HEEEEE---4]
e —— e ——— |————— jr————— 1
1 . - 1 . 1 :
e dlg i 2% a
i f||ter(not(th|s::tfrICachelc.i)) i ForikJoinPool filter(not(this::urlCached))
ALV N N iy
1| map(this::downloadimage) i map(this::downloadimageAsync)
: {} |: |: I .
E) 1 : i E ‘°°°’Ofkor thread® @
i| flatMap(this::applyFilters) i flatMap(this::applyFiltersAsync)
RV J1
{| collect(toList()) i collect(toFuture())

See www.infog.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”

Solve (problem)

if (problem is small enough)

solve problem directly
(sequential algorithm)

else
split problem into independent parts
fork new sub-tasks to solve each part
join all sub-tasks
compose result from sub-results

See en.wikipedia.org/wiki/Divide and conquer algorithm

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”

Solve (problem)

if (problem is small enough) m m ﬁ a

solve problem directly
(sequential algorithm)

else
split problem into independent parts
fork new sub-tasks to solve each part
join all sub-tasks
compose result from sub-results

Overview of the Java Fork-Join Pool Computation Model

 The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer” .

Solve (problem)
if (problem is small enough)
solve problem directly
(sequential algorithm)

else
split problem into independent parts
fork new sub-tasks to solve each part
join all sub-tasks
compose result from sub-results

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Splitting a task into sub-tasks

DataSource
l fork() |
DataSource, DataSource,
I I
fork() fork()
DataSource, DataSource, , DataSource, ; DataSource, ,

See en.wiki

pedia.org/wiki/Fork-join_model

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

o _ DataSource
« Splitting a task into sub-tasks | | |
fork()
« A task creates sub-tasks DataSource, DataSource,
g I I
by fOI‘k() 'ng fork() fork()
DataSource, DataSource, , DataSource, ; DataSource, ,

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork--

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Splitting a task into sub-tasks

DataSource

fork() |
DataSource,

I
« A task creates sub-tasks DataSource,
r; |
by fork()‘ing)
Stop Splitting DataSource, DataSource, ,

Hares!

fork()

DataSource, ;

DataSource, ,

i\

A (sub-)task only splits itself into (more) sub-
tasks if the work is sufficiently large at that level

11

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

» Applying sub-tasks in parallel

I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially

12

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

» Applying sub-tasks in parallel

Applications

I I I .
Additional Frameworks & Languages Process Process Process Process
sequentially sequentially sequentially sequentially

Threading & Synchronization Packages

Java Execution Environment (e.g., JVM)

System Libraries

Implemented by fork-join framework, Java
execution environment, OS, & haradware

Operating System Kernel

13

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

» Applying sub-tasks in parallel

 Sub-tasks run in parallel
on different cores
I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially

Ty

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

» Applying sub-tasks in parallel

 Sub-tasks run in parallel
on different cores
. I . .
Process Process Process Process
sequentially sequentially sequentially sequentially

| Bssssssss

Performance typically increases as the # of cores increases

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

» Applying sub-tasks in parallel

I I I I
* Sub-tasks can also run Process Process Process Process

concu rrently in different sequentially sequentially sequentially sequentially

threads on a single core . é . % f éé 9%

This configuration may not enhance performance unless sub-tasks are I/O bound

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Combining sub-task results

Q Q O O

join() join() join() join()

17

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Combining sub-task results

* join() waits for a
sub-task to finish

Q Q O O

join() join() join() join()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#join

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#join--

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Combining sub-task results

* join() waits for a
sub-task to finish

Q Q O O

join() / join() join() join()

Join() also plays a role in executing sub-tasks

See upcoming lesson on “ 7he Java Fork-Join Pool: Key Methods in ForkJoinTask’

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Combining sub-task results

* join() waits for a
sub-task to finish

« & merges the results

jow jWo

join() join()

20

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Combining sub-task results

* join() waits for a
sub-task to finish

« & merges the results

Partial

Jjoin()

Final result

Partial (sub-)results are merged into a final result

Overview of the Java Fork-Join Pool Computation Model

« The fork-join pool supports a style of parallel programming that solves
problems by “divide & conquer”, e.g.

« Combining sub-task results

» join() occurs in a single
thread at each level

"Children”
join()
"Barent”|__Join() Jjoin()

As a result, there’s typically no need for synchronizers during the joining phase

End of Overview of the
Java Fork-Join Framework

23

