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Starting Point: The SEI's Study on Future of Software Engineering

« CMU SEI's National Agenda Study (November 2021)
was intended to catalyze the software engineering
community by creating a research & development
vision, strategy, & roadmap to engineer the next-
generation of software-reliant systems

Software Engineering Institute

Carnegie Mellon

Study available at www.sei.cmu.edu/go/national-agenda



http://www.sei.cmu.edu/go/national-agenda

The Study Defined a Software Engineering Roadmap for 10-15 Years

« The software engineering roadmap codified research focus areas & researdg |objectives
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“Predictions are hard, especially about the future” — Niels Bohr & Yogi Berra




The Study’s Emerging Vision of the Future of Software Engineering

« “The current notion of software development will be replaced by one where the
software pipeline consists of humans & AI as trustworthy collaborators
that rapidly evolve systems based on programmer intent”
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How Advances in Generative Al are Affecting Our Study Findings
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How Advances in Generative Al are Affecting Our Study Findings
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Two of these six focus areas dealt with Al-augmentation for development & operations




How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)
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Al-augmented
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Al-augmented SDLC
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Conventional
systems built using
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SDLC techniques
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Degree of Al-augmentation in the
Software Development Lifecycle (SDLC)

Application of Large Language Models (LLMs) in
Software Engineering: Overblown Hype or Disruptive
Change?

- - | - <~
4 1 IPEK OZKAYA, ANITA CARLETON, JOHN E. ROBERT, AND
g 3 ¢ | DOUGLAS SCHMIDT (VANDERBILT UNIVERSITY)
‘ | OCTOBER 2, 2023

Has the day finally arrived when large language models (LLMs) turn us all into better software engineers? Or are LLMs creating
more hype than functionality for software development, and, at the same time, plunging everyone into a world where it is hard
to distinguish the perfectly formed, yet sometimes fake and incorrect, code generated by artificial intelligence (Al) programs
from verified and well-tested systems?

LLMs and Their Potential Impact on the Future of Software
Engineering

This blog post, which builds on ideas introduced in the IEEE paper Application of Large Language Models to Software Engineering
Tasks: Opportunities, Risks, and Implications by Ipek Ozkaya, focuses on opportunities and cautions for LLMs in software
development, the implications of incorporating LLMs into software-reliant systems, and the areas where more research and
innovations are needed to advance their use in software engineering. The reaction of the software engineering community to
the accelerated advances that LLMs have demonstrated since the final quarter of 2022 has ranged from snake oil to no help for
programmers to the end of programming and computer science education as we know it to revolutionizing the software
development process. As is often the case, the truth lies somewhere in the middle, including new opportunities and risks for
developers using LLMs.

Research agendas have anticipated that the future of software engineering would include an Al-augmented software
development lifecycle (SDLC), where both software engineers and Al-enabled tools share roles, such as copilot, student, expert,
and supervisor. For example, our November 2021 book Architecting the Future of Software Engineering: A National Agenda for
Software Engineering Research and Development describes a research path toward humans and Al-enabled tools working as
trusted collaborators. However, at that time (a year before ChatGPT was released to the public), we didn't expect these
opportunities for collaboration to emerge so rapidly. The figure below, therefore, expands upon the vision presented in our
2021 book to codify the degree to which Al augmentation can be applied in both system operations and the software
development lifecycle (Figure 1), ranging from conventional methods to fully Al-augmented methods.

See application-of-large language-models-lims-in-software-engineering-overblown-hype-or-disruptive-change



https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-software-engineering-overblown-hype-or-disruptive-change

How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)
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See www.dre.vanderbilt.edu/~schmidt/corba-research-realtime.html ‘
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How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)
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See www.youtube.com/watch?v=18TzOM6Yu9s
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How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)
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How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
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See current & upcoming SEI blog posts on these topics at insights.sei.cmu.edu/blog



https://insights.sei.cmu.edu/blog

Impact on AI-Augmented
Software Development




Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
predication:

See julius-erving-explained-why-he- d|dnt-attempt—dunks-that—have good-chances-of-missing
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Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
predication: Generative Al is/will have
a transformative impact on the practice

of software development
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See dev.to/wesen/lims-will-fundamentally-change-software-engineering-30ij8
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Impact on AI-Augmented Software Development

» We ”. sta_rt out with a. hlghtperc.:entage 13 Best Al Coding Assistant Tools in 2023
predication: Generative Al is/will have (Most Are Free)
a transformative impact on the practice im0 iheriics (RN

of software development SR A N SRR S

« Al-based tools are increasingly being
applied to improve the efficiency &
quality of software engineers by
reducing their cognitive load

WORDPRESS ‘

GitHub CoPilot, Amazon Best Al Coding
CodeWhisperer, Tabnine, Assistant Tools
Android Studio Bot, etc.

/13 Best Al Coding Assistant Tools in 2023 (Most Are Free)

See www.elegantthemes.com/blog/wordpress/best-ai-coding-assistant
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Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
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a transformative impact on the practice
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See www.youtube.com/watch?v=tefB7FqYTXE
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Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
predication: Generative Al is/will have
a transformative impact on the practice
of software development

« Al-based tools are increasingly being
applied to improve the efficiency &
quality of software engineers by
reducing their cognitive load

Not everyone is equally bullish
about the benefits of generative
Al for programmers, of course!!!

BLOG@CACM

Al Does Not Help Programmers

By Bertrand Meyer
June 3, 2023
Comments (3)

VEWAs: E [] | SHARE: = & @ [ )

Everyone is blown away by the new Al-based assistants. (Myself

. included: see an earlier article on this blog which, by the way,

. Iwould write differently today.) They pass bar exams and write
songs. They also produce programs. Starting with Matt Welsh's
article in Communications of the ACM, many people now
pronounce programming dead, most recently The New York
Times.

I have tried to understand how I could use ChatGPT for
programming and, unlike Welsh, found almost nothing. If the idea
is to write some sort of program from scratch, well, then yes. I am
willing to believe the experiment reported on Twitter of how a
beginner using Copilot to beat hands-down a professional
programmer for a from-scratch development of a Minimum Viable
Product program, from "Figma screens and a set of specs." I have also seen people who know next to nothing
about programming get a useful program prototype by just typing in a general specification. I am talking
about something else, the kind of use that Welsh touts: a professional programmer using an Al assistant to do
a better job. It doesn't work.

Precautionary observations:

= Caveat 1: We are in the early days of the technology and it is easy to mistake teething problems for
fundamental limitations. (PC Magazine's initial review of the iPhone: "it's just a plain lousy phone, and
although it makes some exciting advances in handheld Web browsing it is not the Internet in your
pocket.") Still, we have to assess what we have, not what we could get.

See cacm.acm.org/blogs/blog-cacm/273577-ai-does-not-help-programmers/fulltext



https://cacm.acm.org/blogs/blog-cacm/273577-ai-does-not-help-programmers/fulltext

Impact on AI-Augmented Software Development
« Key R&D challenges & opportunities include
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See neal-lathia.medium.com/evaluating-lims-trained-on-code-bb2bdab3cb37
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CODEGEN: AN OPEN LARGE LANGUAGE MODEL FOR
CODE WITH MULTI-TURN PROGRAM SYNTHESIS

« Key R&D challenges & opportunities include

e Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g. L o Moo S G

« CodeGen is an “autoregressive LLM” S

problem specification, expressed with input-output examples or natural language
- - descriptions. The prevalence of large language models advances the state-of-the-art

for program synthesis, though limited training resources and data impede open

O r rO ra I I I S n e S I S ra I n e O n access to such models. To democratize this, we train and release a family of large
language models up to 16.1B parameters, called CODEGEN, on natural language

and programming language data, and open source the training library JAXFORMER.

T - - - ‘We show the utility of the trained model by demonstrating that it is competitive with

e P I e B I u e r & B I P t O n the previous state-of-the-art on zero-shot Python code generation on HumanEval.

, , ‘We further investigate the multi-step paradigm for program synthesis, where a single

program is factorized into multiple prompts specifying subproblems. To this end,

we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB),

consisting of 115 diverse problem sets that are factorized into multi-turn prompts.

Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-

turn fashion significantly improves program synthesis over that provided as a single

turn. We make the training library JAXFORMER and model checkpoints available
as open source contribution: https://github.com/salesforce/CodeGen.

1 INTRODUCTION

Creating a program has typically involved a human entering code by hand. The goal of program
synthesis is to automate the coding process, and generate a computer program that satisfies the user’s
specified intent. Some have called it the holy grail of computer science (Manna & Waldinger, 1971;
Gulwani et al., 2017). Successful program synthesis would not only improve the productivity of
experienced programmers but also make programming accessible to a wider audience.

Two key challenges arise when striving to achieve program synthesis: (1) the intractability of the
search space, and (2) the difficulty of properly specifying user intent. To maintain an expressive search
space, one needs a large search space, which poses challenges in efficient search. Previous work
(Joshi et al., 2002; Panchekha et al., 2015; Cheung et al., 2013) leverages domain-specific language
to restrict the search space; however, this limits the applicability of synthesized programs. On the
contrary, while being widely applicable, general-purpose programming languages (e.g., C, Python)
introduce an even larger search space for possible programs. To navigate through the enormous
program space, we formulate the task as language modeling, learning a conditional distribution of the
next token given preceding tokens and leverage transformers (Vaswani et al., 2017) and large-scale
self-supervised pre-training. This approach has seen success across modalities (Devlin et al., 2019;
Lewis et al., 2020; Dosovitskiy et al., 2021). Likewise, prior works have developed pre-trained

models for progr guage under ding (Kanade et al., 2020; Feng et al., 2020).

To realize program synthesis successfully, users must employ some means to communicate their
intent to the models such as a logical expression (which specifies a logical relation between inputs

* Equal contribution.

Correspondence to: Erik Nijkamp (erik.nijkamp @salesforce.com), Bo Pang (b.pang @salesforce.com),
Hiroaki Hayashi (hiroakihayashi @salesforce.com), Yingbo Zhou (yingbo.zhou@salesforce.com), Caiming
Xiong (cxiong @salesforce.com).

See huggingface.co/docs/transformers/model doc/codegen
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« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

« CodeGen is an “autoregressive LLM"
for program synthesis trained on
The Pile, BigQuery, & BigPython

Autoregressive LLMs generate sequences
of text by predicting each token based on
the previous tokens in a sequential manner
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See www.assemblyai.com/blog/the-full-story-of-large-language-models-and-rlhf
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« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

« CodeGen is an “autoregressive LLM"
for program synthesis trained on
The Pile, BigQuery, & BigPython

o Its strongest language support is for
mainstream languages like Python,
JavaScript, Go, & Ruby

CODEGEN: AN OPEN LARGE LANGUAGE MODEL FOR
CODE WITH MULTI-TURN PROGRAM SYNTHESIS

Erik Nijkamp; Bo Pang; Hiroaki Hayashi;
Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong

Salesforce Research

ABSTRACT

Program synthesis strives to generate a computer program as a solution to a given
problem specification, expressed with input-output examples or natural language
descriptions. The prevalence of large language models advances the state-of-the-art
for program synthesis, though limited training resources and data impede open
access to such models. To democratize this, we train and release a family of large
language models up to 16.1B parameters, called CODEGEN, on natural language
and programming language data, and open source the training library JAXFORMER.
‘We show the utility of the trained model by demonstrating that it is competitive with
the previous state-of-the-art on zero-shot Python code generation on HumanEval.
‘We further investigate the multi-step paradigm for program synthesis, where a single
program is factorized into multiple prompts specifying subproblems. To this end,
we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB),
consisting of 115 diverse problem sets that are factorized into multi-turn prompts.
Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-
turn fashion significantly improves program synthesis over that provided as a single
turn. We make the training library JAXFORMER and model checkpoints available
as open source contribution: https://github.com/salesforce/CodeGen.

1 INTRODUCTION

Creating a program has typically involved a human entering code by hand. The goal of program
synthesis is to automate the coding process, and generate a computer program that satisfies the user’s
specified intent. Some have called it the holy grail of computer science (Manna & Waldinger, 1971;
Gulwani et al., 2017). Successful program synthesis would not only improve the productivity of
experienced programmers but also make programming accessible to a wider audience.

Two key challenges arise when striving to achieve program synthesis: (1) the intractability of the
search space, and (2) the difficulty of properly specifying user intent. To maintain an expressive search
space, one needs a large search space, which poses challenges in efficient search. Previous work
(Joshi et al., 2002; Panchekha et al., 2015; Cheung et al., 2013) leverages domain-specific language
to restrict the search space; however, this limits the applicability of synthesized programs. On the
contrary, while being widely applicable, general-purpose programming languages (e.g., C, Python)
introduce an even larger search space for possible programs. To navigate through the enormous
program space, we formulate the task as language modeling, learning a conditional distribution of the
next token given preceding tokens and leverage transformers (Vaswani et al., 2017) and large-scale
self-supervised pre-training. This approach has seen success across modalities (Devlin et al., 2019;
Lewis et al., 2020; Dosovitskiy et al., 2021). Likewise, prior works have developed pre-trained
language models for programming language understanding (Kanade et al., 2020; Feng et al., 2020).

To realize program synthesis successfully, users must employ some means to communicate their
intent to the models such as a logical expression (which specifies a logical relation between inputs

* Equal contribution.
Correspondence to: Erik Nijkamp (erik.nijkamp @salesforce.com), Bo Pang (b.pang @salesforce.com),
Hiroaki Hayashi (hiroakihayashi @salesforce.com), Yingbo Zhou (yingbo.zhou@salesforce.com), Caiming
Xiong (cxiong @salesforce.com).

See huggingface.co/docs/transformers/model doc/codegen



https://huggingface.co/docs/transformers/model_doc/codegen

Impact on AI-Augmented Software Development
« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

 Specialized LLMs are useful for
communities that have stringent or
unconventional quality attributes

CRITICAL CODE

SOFTWARE PRODUCIBILITY FOR DEFENSE

See nap.nationalacademies.org/catalog/12979/critical-code-software-producibility-for-defense
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« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

BY ORDER OF THE AIR FORCE MANUAL 91-119

SECRETARY OF THE AIR FORCE
. 5 JUNE 2012

Safety

SAFETY DESIGN AND EVALUATION
CRITERIA FOR NUCLEAR WEAPON
SYSTEMS SOFTWARE

COMPLIANCE WITH THIS PUBLICATION IS MANDATORY

ACCESSIBILITY: Publications and forms are available for downloading or ordering on the e-
Publishing website at www.e-Publishing.af.mil

RELEASABILITY: There are no releasability restrictions on this publication

OPR: HQ AFSEC/SEWN Certified by: AF/SE
(Maj Gen Feest)

Supersedes: AFMAN 91-119, 1 February Pages: 30

 Specialized LLMs are useful for
communities that have stringent or e A e

applies to all organizations that design, develop, modify, evaluate, operate or acquire a nuclear
T T T weapon system. This publication is consistent with AFPD 13-5, Air Force Nuclear Enterprise.

u n CO nve n tl O n a q u a I ty a ttrl u teS e . g . This Manual is applicable to Air National Guard and Air Force Reserve units performing nuclear
/ 4 missions. This manual applies to new systems or modified portions of existing systems.

Existing certified systems are not required to be modified solely to meet the requirements of this
= = "L" manual. Refer recommended changes and questions about this publication to the Office of

° M ISSION- & Sda fety- C rltl Cda I SYSte ms Primary Responsibility (OPR) using the AF Form 847, Recommendation for Change of
Publication; route AF Form 847s from the field through the appropriate (MAJCOM)

publications/forms manager. Ensure that all records created as a result of processes prescribed in
this publication are maintained in accordance with AFMAN 33-363, Management of Records,
and disposed of in accordance with the Air Force Records Disposition Schedule (RDS) located at
https://www.my.af.mil/afrims/afrims/afrims/rims.cfm. Send recommendations for

improvements to Headquarters Air Force Safety Center (AFSEC/SEWN), 9700 G Avenue SE,
Kirtland AFB, NM 87117-5670, or email HOAFSCSEWN@kirtland.af.mil

SUMMARY OF CHANGES

This document is substantially revised and shall be completely reviewed. This revision
includes substantive changes. It provides nuclear safety design certification and evaluation
criteria for software systems, including facilities, used to support, maintain, handle or store
nuclear weapons. In addition, organization names were changed to reflect changes since the last

See static.e-publishing.af.mil/production/1/af se/publication/dafman91-119/dafman91-119 dafgm2023-01.pdf
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Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include 4 ﬂ"
~_ Keport t
« Training LLMs on vetted, robust, & s

(perhaps) specialized code bases, e.g. | SYSTEMS LANGUAGES

Including
INITIAL SPECIFICATICNS
for a COMMON BUSINESS
ORIENTED LANGUAGE (COBOL)
for Programming
Electronic Digital Computers

« Specialized LLMs are useful for )
communities that have stringent or o= |
unconventional quality attributes, e.qg.,

L PROGRAMMING LANGUAGES AND  c.J.sH

JOVIAL

« Legacy systems developed & sustained
using non-mainstream programming

languages ,

See nap.nationalacademies.org/read/5463/chapter/3#10
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Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

Maintenance 1

» Re-envisioning the software devel- * Planning
opment lifecycle (SDLC)

'\ Software
jlevelopment
Life Cycle

See en.wikipedia.org/wiki/Software development process
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« Key R&D challenges & opportunities include Automatically Detecting Technical

Debt Discussions with Machine
Learning

ROBERT NORD

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g.

PY Effectlvely Ca ptu re/leve rage data Technical debt (TD) refers to choices made during software development that

achieve short-term goals at the expense of long-term quality. Since developers use
generated th roug hout the SDLC issue trackers to coordinate task priorities, issue trackers are a natural focal point

for discussing TD. In addition, software developers use preset issue types, such as
feature, bug, and vulnerability, to differentiate the nature of the task at hand. We
have recently started seeing developers explicitly use the phrase "technical debt"
or similar terms such as "design debt" or "architectural smells."

APRIL 13, 2020

Although developers often informally discuss TD, the concept has not yet
crystalized into a consistently applied issue type when describing issues in
repositories. Application of machine learning to locate technical debt issues can
improve our understanding of TD and help develop practices to manage it. In this
blog post, which is based on an SEI white paper, we describe the results of a study
in which machine learning was used to quantify the prevalence of TD-related
issues in issue trackers. Although more work is needed, the study achieved
promising results in producing a classifier that automatically determines whether a
ticket in an issue tracker relates to TD. Our results suggest the need to designate a
new technical debt issue type for technical debt to raise visibility and awareness of
TD issues among developers and managers.

See insights.sei.cmu.edu/blog/automatically-detecting-technical-debt-discussions-with-machine-learning
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« Key R&D challenges & opportunities include
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« Re-envisioning the software devel-

O pl I Ie nt I IfeCYCIe (S D LC) e . g . Defining Development Testing and QA Deployment Continuous
/ requirements of the product Prototypes, minimum Container images, maintenance and
Meeting notes, Diagrams, required standards, pipeline, released improvements
1 risk assessments, software documents, benchmarks executables of the product
L4 EffeCt|Ve|y Ca ptu re/leve ra g e data project vision source code User stories, roadmaps,
statements end-user agreements

generated throughout the SDLC

« €.g., many non-code artifacts can be
analyzed at scale by Al tools better/
faster/cheaper than by humans alone

See aiperspectives.springeropen.com/articles/10.1186/s42467-020-00005-4
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« Key R&D challenges & opportunities include
‘ (3) 4] (5]

« Re-envisioning the software devel- <
. (2
Opment IlfeCYCIe (SDLC), e_g . Defining Development Testing and QA Deployment Continuous

requirements of the product Prototypes, minimum Container images, maintenance and
Meeting notes Diagrams, required standards, pipeline, released improvements

o Effectively capture/leverage data =issmns  smapiocmens e S e smnoedmaps
statements end-user agreements

generated throughout the SDLC
« €.g., many non-code artifacts can be

analyzed at scale by Al tools better/
faster/cheaper than by humans alone

These lifecycle phases are the sweet spot for generative augmented
intelligence (AI+) because "utility” is more important than "perfection”
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« Key R&D challenges & opportunities include

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g.

o Effectively capture/leverage data
generated throughout the SDLC

N

Defining
requirements
Meeting notes,

risk assessments,
project vision
statements

« €.g., many non-code artifacts can be

analyzed at scale by Al tools better/

faster/cheaper than by humans alone

Objectives Using LLMs

Development Testing and QA Deployment Continuous

of the product Prototypes, minimum Container images, maintenance and
Diagrams, required standards, pipeline, released improvements
software documents, benchmarks executables of the product
source code User stories, roadmaps,
end-user agreements
BY ORDER OF THE AIR FORCE MANUAL 91-119
SECRETARY OF THE AIR FORCE
> < 5 JUNE 2012
Safety

SAFETY DESIGN AND EVALUATION
CRITERIA FOR NUCLEAR WEAPON
SYSTEMS SOFTWARE

COMPLIANCE WITH THIS PUBLICATION IS MANDATORY

Instructions are clear & | Check for inconsistencies
complete to enable » within 91-119

nuclear surety * between 91-119 & other
relevant documents

ACCESSIBILITY: Publications and forms are available for downloading or ordering on the e-
Publishing website at www.e-Publishing.af.mil

RELEASABILITY: There are no releasability restrictions on this publication

Software Engineering Institute
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« Key R&D challenges & opportunities include

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g. Agents

 Increase Al & automation tool support lan C;ain
for developers & other stakeholders g

throughout the SDLC

See docs.langchain.com/docs
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Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

A

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g.

o Increase AI & automation tool support
for developers & other stakeholders

MISRA Compliance:2020

th roug hOUt the SDLC 2E(I:<§1Erl?-grStandard
Rules for Developing Safe, Reliable, and Secure Systems

e e.g., check for compliance with relevant
policies & standards based on LLM-based
static analysis & other static analysis tools

See wiki.sei.cmu.edu/confluence/display/seccode &

misra.org.uk/app/uploads/2021/06/MISRA-Compliance-2020.pdf



https://wiki.sei.cmu.edu/confluence/display/seccode
https://misra.org.uk/app/uploads/2021/06/MISRA-Compliance-2020.pdf
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« Key R&D challenges & opportunities include

~* PROMPT
"ENGINEERING

« Formalizing the discipline of “Prompt Different

Engineering”

/  Language
Models

Prompt#
; Pmmptsau,DAu.{

ompletion

See en.wikipedia.org/wiki/Prompt _engineering
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Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt
Engineering”, e.q.

« Learning to “program” using natural
language

See en.wikipedia.org/wiki/Prompt _engineering
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Impact on AI-Augmented Software Development
« Key R&D challenges & opportunities include

i

o Formalizing the discipline of "Prompt &
Engineering”, e.q.

« Learning to “program” using natural
language

 Focus on “problem solving” not
traditional computer programming..

See www.youtube.com/watch?v=NrzB6Tb k2Y&list=PLZINgFYEMxp72Z00yrTNS6UtAXXYpgNGI&index=6
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Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

23:¥EVRAN';2R|ENTED PATTERN-ORIENTED
ARCHITECTURE ARCHITECTURE
Design Patterns § wm rm
oo . H
« Formalizing the discipline of “Prompt =
« | |

Engineering”, e.q.

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE
KDITTE] Patterns for Concurrent

and Networked Objects

« Codifying “prompt patterns”

Inspired by software patterns, which provide reusable solutions
to common problems that occur during software development,
providing a template to solve similar issues in various contexts

See www.dre.vanderbilt.edu/~schmidt/POSA
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« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt
Engineering”, e.q.

« Codifying “prompt patterns”

A knowledge transfer method for inter-
acting wylarge language models (LLMs)

A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt
Department of Computer Science
Vanderbilt University, Tennessee
Nashville, TN, USA
{jules.white, quchen.fu, george.s.hays, michael.sandborn, carlos.olea, henry.gilbert,
ashraf.elnashar, jesse.spencer-smith, douglas.c.schmidt} @vanderbilt.edu

Abstract—Prompt engineering is an increasingly important
skill set needed to converse effectively with large language models
(LLMs), such as ChatGPT. Prompts are instructions given to an
LLM to enforce rules, automate processes, and ensure specific
qualities (and quantities) of generated output. Prompts are also
a form of progr ing that can the outputs and
interactions with an LLM.

This paper describes a catalog of prompt engineering tech-
niques presented in pattern form that have been applied to solve
common problems when conversing with LLMs. Prompt patterns
are a knowledge transfer method analogous to software patterns
since they provide reusable solutions to common problems faced
in a particular context, i.e., output generation and interaction
when working with LLMs.

This paper provides the following contributions to research on
prompt engineering that apply LLMs to automate software de-
velopment tasks. First, it provides a framework for documenting
patterns for structuring prompts to solve a range of problems
so that they can be adapted to different domains. Second, it
presents a catalog of patterns that have been applied successfully
to improve the outputs of LLM conversations. Third, it explains
how prompts can be built from multiple patterns and illustrates
prompt patterns that benefit from combination with other prompt
patterns.

Index Terms—large language models, prompt patterns, prompt
engineering

I. INTRODUCTION

Conversational large language models (LLMs) [1], such as
ChatGPT [2], have generated immense interest in a range
of domains for tasks ranging from answering questions on
medical licensing exams [3] to generating code snippets. This
paper focuses on enhancing the application of LLMs in several
domains, such as helping developers code effectively and
efficiently with unfamiliar APIs or allowing students to acquire
new coding skills and techniques.

LLMs are particularly promising in domains where humans
and Al tools work together as trustworthy collaborators to
more rapidly and reliably evolve software-reliant systems [4].
For example, LLMs are being integrated directly into software
tools, such as Github’s Co-Pilot [5]-[7] and included in inte-
grated development environments (IDEs), such as IntelliJ [8]
and Visual Studio Code, thereby allowing software teams to
access these tools directly from their preferred IDE.

A prompt [9] is a set of instructions provided to an
LLM that programs the LLM by customizing it and/or en-
hancing or refining its capabilities. A prompt can influence
subsequent interactions with—and output generated from—an

LLM by providing specific rules and guidelines for an LLM
conversation with a set of initial rules. In particular, a prompt
sets the context for the conversation and tells the LLM what
information is important and what the desired output form and
content should be.

For example, a prompt could specify that an LLM should
only generate code that follows a certain coding style or
programming paradigm. Likewise, it could specify that an
LLM should flag certain keywords or phrases in a generated
document and provide additional information related to those
keywords. By introducing these guidelines, prompts facilitate
more structured and nuanced outputs to aid a large variety of
software engineering tasks in the context of LLMs.

Prompt engineering is the means by which LLMs are
progr d via pr To demonstrate the power of
prompt engineering, we provide the following prompt:

Prompt: “From now on, I would like you to ask me
questions to deploy a Python application to AWS.
When you have enough information to deploy the
application, create a Python script to automate the
deployment.”

This example prompt causes ChatGPT to begin asking the
user questions about their software application. ChatGPT will
drive the question-asking process until it reaches a point where
it has sufficient information to generate a Python script that
automates deployment. This example demonstrates the pro-
gramming potential of prompts beyond conventional “generate
a method that does X” style prompts or “answer this quiz
question”.

Moreover, prompts can be engineered to program an LLM
to accomplish much more than simply dictating the output type
or filtering the information provided to the model. With the
right prompt, it is possible to create entirely new interaction
paradigms, such as having an LLM generate and give a quiz
associated with a software engineering concept or tool, or
even simulate a Linux terminal window. Moreover, prompts
have the potential for self-adaptation, suggesting other prompts
to gather additional information or generate related artifacts.
These advanced capabilities of prompts highlight the impor-
tance of engineering them to provide value beyond simple text
or code generation.

Prompt patterns are essential to effective prompt engi-
neering. A key contribution of this paper is the introduction
of prompt patterns to document successful approaches for

See arxiv.org/abs/2302.11382
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« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt

Engineering”, e.q.

TABLE 1
CLASSIFYING PROMPT PATTERNS FOR AUTOMATING SOFTWARE

ENGINEERING TASKS

Requirements Elicitation

Requirements Simulator
Specification Disambiguation
Change Request Simulation

System Design and Simulation

API Generator

API Simulator

Few-shot Example Generator
Domain-Specific Language (DSL) Creation
Architectural Possibilities

Code Quality

Code Clustering

Intermediate Abstraction
Principled Code
Hidden Assumptions

Refactoring

Pseudo-code Refactoring
Data-guided Refactoring

« Codifying “prompt patterns”

Define a pattern catalog for automating software
engineering tasks that is classified by the types
of problems they solve throughout the SDLC

See arxiv.org/abs/2303.07839
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« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt
. . ” Holistic
Engineering’, e.q. Prompt

Engineering

Engineering
Models & Methods

Construction

Testing

o Integrating canonical quality attributes
associated with software engineering

Engineering

Management Maintenance

Configuration
Management

See hbr.org/2023/06/ai-prompt-engineering-isnt-the-future
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