Assuring the Future of
Software Engineering
& Al Engineering

9

Starting Point: The SEI's Study on Future of Software Engineering

« CMU SEI's National Agenda Study (November 2021)
was intended to catalyze the software engineering
community by creating a research & development
vision, strategy, & roadmap to engineer the next-
generation of software-reliant systems

Software Engineering Institute

Carnegie Mellon

Study available at www.sei.cmu.edu/go/national-agenda

http://www.sei.cmu.edu/go/national-agenda

The Study Defined a Software Engineering Roadmap for 10-15 Years

« The software engineering roadmap codified research focus areas & researdg |objectives

cion ﬂ‘\l’ough E ngin eerin

X Ay,
co“s" co“ed'-ness SOftWares £En

?\Q\ «\VOS“:‘O“a\ .Vste,ns

Al-enabled system
specification methods

Theory of composability for
model-integrated computing
and quality attributes

Design and analysis methods

Documented patterns and tools for Al-enabled systems

for composition notations,
rules, & relationships

Q Testing practices for
A Theory for assured . .
% compgsition Sfieens “Smart composition” Al-enabled systems New quality attributes %
Q technologies based on human (
Modifiable Assurance . Data management in A~ seiergicEl e}
Q assurance argument A Integrated tool chains support of 7
arguments templates to assure composed Al-enabled systems System instrumentation to
(J & P behaviors at scale monitor effects of system
% Automatic detection ifa befortc_e &during Uncertainty enisecialbehavior SO
system change invalidates AED management 5 i
N\ ? an assurance argument ° methods Automated detection & O
. Intelligent protection against misuse of
Q Automatic Zystgem lépdage interacting Continuous socio-technical platforms o« ;
<< . recommendations base formalisms & monitoring & L)
——— v

Platforms for
continuously evolving
socio-technical
ecosystems

)\ capabilities

quantum algorithms
Tool chains for
combining evidence
tore-assure

Data & data models for

Al-augmented paradigms Debugging tools

& techniques

asystem

Standardized
Ne.\év formsfof ; Scaled auto-code Domai if software stack
evidence of quality generation & repair I interfaces

VISION languages

Evidence of developer Humans and Al
acceptance

Automated design,
evolution, and analysis tools

Profiling tools Hybrid classical
are trustworthy quantum algorithms

collaborators that
rapidly evolve

Research Research systems based on Research Research
Focus Topics programmer intent Topics Focus

Areas Areas

“Predictions are hard, especially about the future” — Niels Bohr & Yogi Berra

The Study’s Emerging Vision of the Future of Software Engineering

« “The current notion of software development will be replaced by one where the
software pipeline consists of humans & AI as trustworthy collaborators
that rapidly evolve systems based on programmer intent”

pultPrevented()){var h=a(d);th1s.activarELm=="" | N 0.0 ¢ W Fun
:"sh n.bs.tab",relatedTarget:8[9]})})}}}:C .prototype & B) =

ry sl

» .active”).removeClass("active”).end().find(’ [data-toggle="tab \ B
ia-expanded”, 10),h?(b[@].of fsetWidth,b.addClass("in")) :b.removeCig==—5

)-find(*[data-toggle="tab"]").attr("aria-expanded", 10), e&&e () JvER"1_ . 3
#")|1!1d.ind("> .fade").length);g. length&&h?g.one("bsTransition SN

= am |\

var f-a.fn. tab;a.fn.tab=b,a.fn.tab. Constructor=c,a.fn.tab.noCons
show”)};a(document).on("click.bs. tab. data-api”, '[data -toggle="t

e strict”: function b(b){petu,.n thi
e 15.each{func+ine = :
typeof bake[b]()}) Jvar - (function(){var d=a(thi
‘ =a.extend({}

; f””cuc’”(b,d){thiz.options

-affixed)n
(tc?"too"-mgﬂl 400 »

How Advances in Generative Al are Affecting Our Study Findings

cion through E ngin eerin

'

A
crectness Softw, h
g€ Sys,

cons!
tems

onal o

?"Q\ oo™

Theory of composability for
model-integrated computing
and quality attributes

Al-enabled system
specification methods

Design and analysis methods

Documented patterns and tools for Al-enabled systems

for composition notations,
rules, & relationships

Testing practices for
Al-enabled systems

New quality attributes

Theory for assured
based on human

P . 3 HH »
composition of evidence Smart composition

technologies

monitoring & £

sustainment

recommendations based formalisms &

on operational data

Q Modifiable Assurance . Data management in A behavior at scale (¢O

Q assurance argument Integrated tool chains support of . ' 7
Q/ arguments templates to assure composed Al-enabled systems System instrumentation to ¢
(J behaviors at scale monitor effects of system
% Nliomaticdetectioniis before & during Uncertainty on social behavior '70
system change invalidates MOAATS management 5 i
§- an assurance argument ° methods Automated detection & O
. Intelligent protection against misuse of
Q Automatic system update interacting Continuous socio-technical platforms o« ;
S

Expanded set of
quantum algorithms

assurance
)\ capabilities

Re-envisioned software
development lifecycle

Platforms for
continuously evolving
socio-technical
ecosystems

Tool chains for
combining evidence
to re-assure

Debugging tools

Data & data models for
& techniques

Al-augmented paradigms

New ft f <" Standardized
e.\év ormsfo lit Scaled auto-code Domain-specific Re e stack
evidence of quality generation & repair languagesp interfaces

_ VISION
Evidence of developer Humans and Al Profiling tools
acceptance
are trustworthy
collaborators that
rapidly evolve

Hybrid classical

Automated design,
quantum algorithms

evolution, and analysis tools

Research Research systems based on Research Research
Focus Topics programmer intent Topics Focus
Areas Areas

Our original study covered six research focus areas

How Advances in Generative Al are Affecting Our Study Findings

Al-enabled system
specification methods

Design and analysis methods
for Al-enabled systems

Testing practices for
Al-enabled systems

Data management in
support of
Al-enabled systems

Uncertainty
management
methods

Continuous
monitoring & £
sustainment

Re-envisioned software
development lifecycle

Data & data models for
Al-augmented paradigms

New formsof Scaled auto-code
evidence of quality generation & repair

VISION

Evidence of developer Humans and Al
acceptance
are trustworthy
collaborators that

rapidly evolve - . J

Automated design,
evolution, and analysis tools

Research Research systems based on Research Research
Focus Topics programmer intent Topics Focus
Areas Areas

Two of these six focus areas dealt with Al-augmentation for development & operations

How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)

High
Al-augmented

systems built using
conventional SDLC

technigues

Conventional
systems built
using conventional
SDLC techniques

Degree of Al-augmentation
for System Operations

Low

Al-augmented
systems built using
Al-augmented SDLC
techniques

Conventional
systems built using
Al-augmented
SDLC techniques

Low

High

Degree of Al-augmentation in the
Software Development Lifecycle (SDLC)

Application of Large Language Models (LLMs) in
Software Engineering: Overblown Hype or Disruptive
Change?

- - | - <~
4 1 IPEK OZKAYA, ANITA CARLETON, JOHN E. ROBERT, AND
g 3 ¢ | DOUGLAS SCHMIDT (VANDERBILT UNIVERSITY)
‘ | OCTOBER 2, 2023

Has the day finally arrived when large language models (LLMs) turn us all into better software engineers? Or are LLMs creating
more hype than functionality for software development, and, at the same time, plunging everyone into a world where it is hard
to distinguish the perfectly formed, yet sometimes fake and incorrect, code generated by artificial intelligence (Al) programs
from verified and well-tested systems?

LLMs and Their Potential Impact on the Future of Software
Engineering

This blog post, which builds on ideas introduced in the IEEE paper Application of Large Language Models to Software Engineering
Tasks: Opportunities, Risks, and Implications by Ipek Ozkaya, focuses on opportunities and cautions for LLMs in software
development, the implications of incorporating LLMs into software-reliant systems, and the areas where more research and
innovations are needed to advance their use in software engineering. The reaction of the software engineering community to
the accelerated advances that LLMs have demonstrated since the final quarter of 2022 has ranged from snake oil to no help for
programmers to the end of programming and computer science education as we know it to revolutionizing the software
development process. As is often the case, the truth lies somewhere in the middle, including new opportunities and risks for
developers using LLMs.

Research agendas have anticipated that the future of software engineering would include an Al-augmented software
development lifecycle (SDLC), where both software engineers and Al-enabled tools share roles, such as copilot, student, expert,
and supervisor. For example, our November 2021 book Architecting the Future of Software Engineering: A National Agenda for
Software Engineering Research and Development describes a research path toward humans and Al-enabled tools working as
trusted collaborators. However, at that time (a year before ChatGPT was released to the public), we didn't expect these
opportunities for collaboration to emerge so rapidly. The figure below, therefore, expands upon the vision presented in our
2021 book to codify the degree to which Al augmentation can be applied in both system operations and the software
development lifecycle (Figure 1), ranging from conventional methods to fully Al-augmented methods.

See application-of-large language-models-lims-in-software-engineering-overblown-hype-or-disruptive-change

https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-software-engineering-overblown-hype-or-disruptive-change

How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)

High

Degree of Al-augmentation

for System Operations

Low

An avionics mission computing
Al-augmented Al-augmented system developed wy/conventional
systems built using systems bullt using SDLC techniques with no Al-
conventional SDLC Al -augmented SDLC augmented tools or methods
technigues techniques
’ oY ST, ‘
Conventional Conventional
systems built systems built using —— pata tinks
using conventional Al-augmented <> Mgmt | [Computer AT
SDLC technigues SDLC technigues — -
Mang pment @ @ ::a;tns
Low High

Degree of Al-augmentation in the
Software Development Lifecycle (SDLC)

See www.dre.vanderbilt.edu/~schmidt/corba-research-realtime.html ‘

http://www.dre.vanderbilt.edu/~schmidt/corba-research-realtime.html

How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)

High

Degree of Al-augmentation

for System Operations

Low

A mobile web crawler app where the logic &
Al-augmented Al-augmented content is not AI-augmented, although the
systems built using systems bullt using SDLC process applies AI-augmented code
conventional SDLC Al-augmented SDLC A\ reviews, code generators, andyor testing tools

technigues techniques

Conventional Conventional
systems built systems built using
using conventional Al-augmented
SDLC technigues SDLC technigues
Low High

Degree of Al-augmentation in the
Software Development Lifecycle (SDLC)

See www.youtube.com/watch?v=18TzOM6Yu9s

http://www.youtube.com/watch?v=18TzQM6Yu9s

How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)

High
- Al-augmented Al-augmented A recommendation engine in an e-
2 v systems buill using systems built using commerce platform that employs machine
© 5 conventional SDLC Al-augmented SDLC) ol od ot
2 .9 techniques techniques earning for customize recommen ations,
GE) g \ however, the software itself is developed,
25 tested, & deployed using Agile methods
O
<5
c 2 Conventional Conventional
(ORL . . .
O = systems built systems bullt using
o using conventional Al-augmented
- SDLC technigues SDLC technigues

Low

Low High

Degree of Al-augmentation in the
Software Development Lifecycle (SDLC)

See www.youtube.com/watch?v=_d cEVpGOrg

http://www.youtube.com/watch?v=_d_cEVpGOrg

How Advances in Generative Al are Affecting Our Study Findings

« Based on recent experience, we've created a new taxonomy of the degree of Al-
augmentation for system operations & for the software development lifecycle (SDLC)

High
Al-augmented Al-augmented

S " systems built using systems bullt using
© 5 conventional SDLC Al-augmented SDLC
S5 technigues technigues
E o
O QO
i
<9
c 2 Conventional Conventional
(O . . .
O systems built systems bullt using
o using conventional Al-augmented
= SDLC technigues SDLC technigues

Low A self-driving car system that uses machine

_ learning algorithms for navigation & decision-
Low o High making, as well as Al-driven DevOps tools for
Degree of Al-augmentation in the software development, testing, & deployment

Software Development Lifecycle (SDLC)

See current & upcoming SEI blog posts on these topics at insights.sei.cmu.edu/blog

https://insights.sei.cmu.edu/blog

Impact on AI-Augmented
Software Development

Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
predication:

See julius-erving-explained-why-he- d|dnt-attempt—dunks-that—have good-chances-of-missing

https://www.basketballnetwork.net/old-school/julius-erving-explained-why-he-didnt-attempt-dunks-that-have-good-chances-of-missing

Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
predication: Generative Al is/will have
a transformative impact on the practice

of software development

Data and data
models for 5
Al-augmented Automated generatlt?n

and repair Evidence of

paradigms design,
evolution, and developer
acceptance

analysis tools

are trustworthy
collaborators that
rapidly evolve
systems based on

See dev.to/wesen/lims-will-fundamentally-change-software-engineering-30ij8

https://dev.to/wesen/llms-will-fundamentally-change-software-engineering-3oj8

Impact on AI-Augmented Software Development

» We ”. sta_rt out with a. hlghtperc.:entage 13 Best Al Coding Assistant Tools in 2023
predication: Generative Al is/will have (Most Are Free)
a transformative impact on the practice im0 iheriics (RN

of software development SR A N SRR S

« Al-based tools are increasingly being
applied to improve the efficiency &
quality of software engineers by
reducing their cognitive load

WORDPRESS ‘

GitHub CoPilot, Amazon Best Al Coding
CodeWhisperer, Tabnine, Assistant Tools
Android Studio Bot, etc.

/13 Best Al Coding Assistant Tools in 2023 (Most Are Free)

See www.elegantthemes.com/blog/wordpress/best-ai-coding-assistant

http://www.elegantthemes.com/blog/wordpress/best-ai-coding-assistant

Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
predication: Generative Al is/will have
a transformative impact on the practice
of software development

« Al-based tools are increasingly being
applied to improve the efficiency &
quality of software engineers by Work
reducing their cognitive load

Microservices

Cloud
Servers

;;;;;

Request

Work
Request

itk B ARl £
- ; .2
AT)

See www.youtube.com/watch?v=tefB7FqYTXE

http://www.youtube.com/watch?v=tefB7FgYTxE

Impact on AI-Augmented Software Development

« We'll start out with a “high-percentage”
predication: Generative Al is/will have
a transformative impact on the practice
of software development

« Al-based tools are increasingly being
applied to improve the efficiency &
quality of software engineers by
reducing their cognitive load

Not everyone is equally bullish
about the benefits of generative
Al for programmers, of course!!!

BLOG@CACM

Al Does Not Help Programmers

By Bertrand Meyer
June 3, 2023
Comments (3)

VEWAs: E [] | SHARE: = & @ [)

Everyone is blown away by the new Al-based assistants. (Myself

. included: see an earlier article on this blog which, by the way,

. Iwould write differently today.) They pass bar exams and write
songs. They also produce programs. Starting with Matt Welsh's
article in Communications of the ACM, many people now
pronounce programming dead, most recently The New York
Times.

I have tried to understand how I could use ChatGPT for
programming and, unlike Welsh, found almost nothing. If the idea
is to write some sort of program from scratch, well, then yes. I am
willing to believe the experiment reported on Twitter of how a
beginner using Copilot to beat hands-down a professional
programmer for a from-scratch development of a Minimum Viable
Product program, from "Figma screens and a set of specs." I have also seen people who know next to nothing
about programming get a useful program prototype by just typing in a general specification. I am talking
about something else, the kind of use that Welsh touts: a professional programmer using an Al assistant to do
a better job. It doesn't work.

Precautionary observations:

= Caveat 1: We are in the early days of the technology and it is easy to mistake teething problems for
fundamental limitations. (PC Magazine's initial review of the iPhone: "it's just a plain lousy phone, and
although it makes some exciting advances in handheld Web browsing it is not the Internet in your
pocket.") Still, we have to assess what we have, not what we could get.

See cacm.acm.org/blogs/blog-cacm/273577-ai-does-not-help-programmers/fulltext

https://cacm.acm.org/blogs/blog-cacm/273577-ai-does-not-help-programmers/fulltext

Impact on AI-Augmented Software Development
« Key R&D challenges & opportunities include

Data Data Model

] Training LLMS on VettEd, rObUSt, & Collection Preprocessing Training

=)&) QP

(perhaps) specialized code bases

v

B (@ @

Evaluation Content Model
Generation Optimization

=
-t

AN
- Y o

l\‘v LN

\ il
e N4 ¢
N ?

See neal-lathia.medium.com/evaluating-lims-trained-on-code-bb2bdab3cb37

https://neal-lathia.medium.com/evaluating-llms-trained-on-code-bb2bdab3cb37

Impact on AI-Augmented Software Development

CODEGEN: AN OPEN LARGE LANGUAGE MODEL FOR
CODE WITH MULTI-TURN PROGRAM SYNTHESIS

« Key R&D challenges & opportunities include

e Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g. L o Moo S G

« CodeGen is an “autoregressive LLM” S

problem specification, expressed with input-output examples or natural language
- - descriptions. The prevalence of large language models advances the state-of-the-art

for program synthesis, though limited training resources and data impede open

O r rO ra I I I S n e S I S ra I n e O n access to such models. To democratize this, we train and release a family of large
language models up to 16.1B parameters, called CODEGEN, on natural language

and programming language data, and open source the training library JAXFORMER.

T - - - ‘We show the utility of the trained model by demonstrating that it is competitive with

e P I e B I u e r & B I P t O n the previous state-of-the-art on zero-shot Python code generation on HumanEval.

, , ‘We further investigate the multi-step paradigm for program synthesis, where a single

program is factorized into multiple prompts specifying subproblems. To this end,

we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB),

consisting of 115 diverse problem sets that are factorized into multi-turn prompts.

Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-

turn fashion significantly improves program synthesis over that provided as a single

turn. We make the training library JAXFORMER and model checkpoints available
as open source contribution: https://github.com/salesforce/CodeGen.

1 INTRODUCTION

Creating a program has typically involved a human entering code by hand. The goal of program
synthesis is to automate the coding process, and generate a computer program that satisfies the user’s
specified intent. Some have called it the holy grail of computer science (Manna & Waldinger, 1971;
Gulwani et al., 2017). Successful program synthesis would not only improve the productivity of
experienced programmers but also make programming accessible to a wider audience.

Two key challenges arise when striving to achieve program synthesis: (1) the intractability of the
search space, and (2) the difficulty of properly specifying user intent. To maintain an expressive search
space, one needs a large search space, which poses challenges in efficient search. Previous work
(Joshi et al., 2002; Panchekha et al., 2015; Cheung et al., 2013) leverages domain-specific language
to restrict the search space; however, this limits the applicability of synthesized programs. On the
contrary, while being widely applicable, general-purpose programming languages (e.g., C, Python)
introduce an even larger search space for possible programs. To navigate through the enormous
program space, we formulate the task as language modeling, learning a conditional distribution of the
next token given preceding tokens and leverage transformers (Vaswani et al., 2017) and large-scale
self-supervised pre-training. This approach has seen success across modalities (Devlin et al., 2019;
Lewis et al., 2020; Dosovitskiy et al., 2021). Likewise, prior works have developed pre-trained

models for progr guage under ding (Kanade et al., 2020; Feng et al., 2020).

To realize program synthesis successfully, users must employ some means to communicate their
intent to the models such as a logical expression (which specifies a logical relation between inputs

* Equal contribution.

Correspondence to: Erik Nijkamp (erik.nijkamp @salesforce.com), Bo Pang (b.pang @salesforce.com),
Hiroaki Hayashi (hiroakihayashi @salesforce.com), Yingbo Zhou (yingbo.zhou@salesforce.com), Caiming
Xiong (cxiong @salesforce.com).

See huggingface.co/docs/transformers/model doc/codegen

https://huggingface.co/docs/transformers/model_doc/codegen

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

« CodeGen is an “autoregressive LLM"
for program synthesis trained on
The Pile, BigQuery, & BigPython

Autoregressive LLMs generate sequences
of text by predicting each token based on
the previous tokens in a sequential manner

/

= The Trevi fountain is in the center of ???

e

o

.

Language Model

2
» O&7. O
KO0 >
- x 0

A ? J

—y
-

JJ‘ { Rome] ‘/Buenos Aires\

96% 0.1%
| |

~

/

See www.assemblyai.com/blog/the-full-story-of-large-language-models-and-rlhf

http://www.assemblyai.com/blog/the-full-story-of-large-language-models-and-rlhf

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

« CodeGen is an “autoregressive LLM"
for program synthesis trained on
The Pile, BigQuery, & BigPython

o Its strongest language support is for
mainstream languages like Python,
JavaScript, Go, & Ruby

CODEGEN: AN OPEN LARGE LANGUAGE MODEL FOR
CODE WITH MULTI-TURN PROGRAM SYNTHESIS

Erik Nijkamp; Bo Pang; Hiroaki Hayashi;
Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong

Salesforce Research

ABSTRACT

Program synthesis strives to generate a computer program as a solution to a given
problem specification, expressed with input-output examples or natural language
descriptions. The prevalence of large language models advances the state-of-the-art
for program synthesis, though limited training resources and data impede open
access to such models. To democratize this, we train and release a family of large
language models up to 16.1B parameters, called CODEGEN, on natural language
and programming language data, and open source the training library JAXFORMER.
‘We show the utility of the trained model by demonstrating that it is competitive with
the previous state-of-the-art on zero-shot Python code generation on HumanEval.
‘We further investigate the multi-step paradigm for program synthesis, where a single
program is factorized into multiple prompts specifying subproblems. To this end,
we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB),
consisting of 115 diverse problem sets that are factorized into multi-turn prompts.
Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-
turn fashion significantly improves program synthesis over that provided as a single
turn. We make the training library JAXFORMER and model checkpoints available
as open source contribution: https://github.com/salesforce/CodeGen.

1 INTRODUCTION

Creating a program has typically involved a human entering code by hand. The goal of program
synthesis is to automate the coding process, and generate a computer program that satisfies the user’s
specified intent. Some have called it the holy grail of computer science (Manna & Waldinger, 1971;
Gulwani et al., 2017). Successful program synthesis would not only improve the productivity of
experienced programmers but also make programming accessible to a wider audience.

Two key challenges arise when striving to achieve program synthesis: (1) the intractability of the
search space, and (2) the difficulty of properly specifying user intent. To maintain an expressive search
space, one needs a large search space, which poses challenges in efficient search. Previous work
(Joshi et al., 2002; Panchekha et al., 2015; Cheung et al., 2013) leverages domain-specific language
to restrict the search space; however, this limits the applicability of synthesized programs. On the
contrary, while being widely applicable, general-purpose programming languages (e.g., C, Python)
introduce an even larger search space for possible programs. To navigate through the enormous
program space, we formulate the task as language modeling, learning a conditional distribution of the
next token given preceding tokens and leverage transformers (Vaswani et al., 2017) and large-scale
self-supervised pre-training. This approach has seen success across modalities (Devlin et al., 2019;
Lewis et al., 2020; Dosovitskiy et al., 2021). Likewise, prior works have developed pre-trained
language models for programming language understanding (Kanade et al., 2020; Feng et al., 2020).

To realize program synthesis successfully, users must employ some means to communicate their
intent to the models such as a logical expression (which specifies a logical relation between inputs

* Equal contribution.
Correspondence to: Erik Nijkamp (erik.nijkamp @salesforce.com), Bo Pang (b.pang @salesforce.com),
Hiroaki Hayashi (hiroakihayashi @salesforce.com), Yingbo Zhou (yingbo.zhou@salesforce.com), Caiming
Xiong (cxiong @salesforce.com).

See huggingface.co/docs/transformers/model doc/codegen

https://huggingface.co/docs/transformers/model_doc/codegen

Impact on AI-Augmented Software Development
« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

 Specialized LLMs are useful for
communities that have stringent or
unconventional quality attributes

CRITICAL CODE

SOFTWARE PRODUCIBILITY FOR DEFENSE

See nap.nationalacademies.org/catalog/12979/critical-code-software-producibility-for-defense

https://nap.nationalacademies.org/catalog/12979/critical-code-software-producibility-for-defense

Impact on AI-Augmented Software Development
« Key R&D challenges & opportunities include

« Training LLMs on vetted, robust, &
(perhaps) specialized code bases, e.g.

BY ORDER OF THE AIR FORCE MANUAL 91-119

SECRETARY OF THE AIR FORCE
. 5 JUNE 2012

Safety

SAFETY DESIGN AND EVALUATION
CRITERIA FOR NUCLEAR WEAPON
SYSTEMS SOFTWARE

COMPLIANCE WITH THIS PUBLICATION IS MANDATORY

ACCESSIBILITY: Publications and forms are available for downloading or ordering on the e-
Publishing website at www.e-Publishing.af.mil

RELEASABILITY: There are no releasability restrictions on this publication

OPR: HQ AFSEC/SEWN Certified by: AF/SE
(Maj Gen Feest)

Supersedes: AFMAN 91-119, 1 February Pages: 30

 Specialized LLMs are useful for
communities that have stringent or e A e

applies to all organizations that design, develop, modify, evaluate, operate or acquire a nuclear
T T T weapon system. This publication is consistent with AFPD 13-5, Air Force Nuclear Enterprise.

u n CO nve n tl O n a q u a I ty a ttrl u teS e . g . This Manual is applicable to Air National Guard and Air Force Reserve units performing nuclear
/ 4 missions. This manual applies to new systems or modified portions of existing systems.

Existing certified systems are not required to be modified solely to meet the requirements of this
= = "L" manual. Refer recommended changes and questions about this publication to the Office of

° M ISSION- & Sda fety- C rltl Cda I SYSte ms Primary Responsibility (OPR) using the AF Form 847, Recommendation for Change of
Publication; route AF Form 847s from the field through the appropriate (MAJCOM)

publications/forms manager. Ensure that all records created as a result of processes prescribed in
this publication are maintained in accordance with AFMAN 33-363, Management of Records,
and disposed of in accordance with the Air Force Records Disposition Schedule (RDS) located at
https://www.my.af.mil/afrims/afrims/afrims/rims.cfm. Send recommendations for

improvements to Headquarters Air Force Safety Center (AFSEC/SEWN), 9700 G Avenue SE,
Kirtland AFB, NM 87117-5670, or email HOAFSCSEWN@kirtland.af.mil

SUMMARY OF CHANGES

This document is substantially revised and shall be completely reviewed. This revision
includes substantive changes. It provides nuclear safety design certification and evaluation
criteria for software systems, including facilities, used to support, maintain, handle or store
nuclear weapons. In addition, organization names were changed to reflect changes since the last

See static.e-publishing.af.mil/production/1/af se/publication/dafman91-119/dafman91-119 dafgm2023-01.pdf

https://static.e-publishing.af.mil/production/1/af_se/publication/dafman91-119/dafman91-119_dafgm2023-01.pdf

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include 4 ﬂ"
~_ Keport t
« Training LLMs on vetted, robust, & s

(perhaps) specialized code bases, e.g. | SYSTEMS LANGUAGES

Including
INITIAL SPECIFICATICNS
for a COMMON BUSINESS
ORIENTED LANGUAGE (COBOL)
for Programming
Electronic Digital Computers

« Specialized LLMs are useful for)
communities that have stringent or o= |
unconventional quality attributes, e.qg.,

L PROGRAMMING LANGUAGES AND c.J.sH

JOVIAL

« Legacy systems developed & sustained
using non-mainstream programming

languages ,

See nap.nationalacademies.org/read/5463/chapter/3#10

https://nap.nationalacademies.org/read/5463/chapter/3

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

Maintenance 1

» Re-envisioning the software devel- * Planning
opment lifecycle (SDLC)

'\ Software
jlevelopment
Life Cycle

See en.wikipedia.org/wiki/Software development process

https://en.wikipedia.org/wiki/Software_development_process

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include Automatically Detecting Technical

Debt Discussions with Machine
Learning

ROBERT NORD

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g.

PY Effectlvely Ca ptu re/leve rage data Technical debt (TD) refers to choices made during software development that

achieve short-term goals at the expense of long-term quality. Since developers use
generated th roug hout the SDLC issue trackers to coordinate task priorities, issue trackers are a natural focal point

for discussing TD. In addition, software developers use preset issue types, such as
feature, bug, and vulnerability, to differentiate the nature of the task at hand. We
have recently started seeing developers explicitly use the phrase "technical debt"
or similar terms such as "design debt" or "architectural smells."

APRIL 13, 2020

Although developers often informally discuss TD, the concept has not yet
crystalized into a consistently applied issue type when describing issues in
repositories. Application of machine learning to locate technical debt issues can
improve our understanding of TD and help develop practices to manage it. In this
blog post, which is based on an SEI white paper, we describe the results of a study
in which machine learning was used to quantify the prevalence of TD-related
issues in issue trackers. Although more work is needed, the study achieved
promising results in producing a classifier that automatically determines whether a
ticket in an issue tracker relates to TD. Our results suggest the need to designate a
new technical debt issue type for technical debt to raise visibility and awareness of
TD issues among developers and managers.

See insights.sei.cmu.edu/blog/automatically-detecting-technical-debt-discussions-with-machine-learning

https://insights.sei.cmu.edu/blog/automatically-detecting-technical-debt-discussions-with-machine-learning

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include
f f:x%\t > >
< N
3] 4] (5]

« Re-envisioning the software devel-

O pl I Ie nt I IfeCYCIe (S D LC) e . g . Defining Development Testing and QA Deployment Continuous
/ requirements of the product Prototypes, minimum Container images, maintenance and
Meeting notes, Diagrams, required standards, pipeline, released improvements
1 risk assessments, software documents, benchmarks executables of the product
L4 EffeCt|Ve|y Ca ptu re/leve ra g e data project vision source code User stories, roadmaps,
statements end-user agreements

generated throughout the SDLC

« €.g., many non-code artifacts can be
analyzed at scale by Al tools better/
faster/cheaper than by humans alone

See aiperspectives.springeropen.com/articles/10.1186/s42467-020-00005-4

https://aiperspectives.springeropen.com/articles/10.1186/s42467-020-00005-4

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include
‘ (3) 4] (5]

« Re-envisioning the software devel- <
. (2
Opment IlfeCYCIe (SDLC), e_g . Defining Development Testing and QA Deployment Continuous

requirements of the product Prototypes, minimum Container images, maintenance and
Meeting notes Diagrams, required standards, pipeline, released improvements

o Effectively capture/leverage data =issmns smapiocmens e S e smnoedmaps
statements end-user agreements

generated throughout the SDLC
« €.g., many non-code artifacts can be

analyzed at scale by Al tools better/
faster/cheaper than by humans alone

These lifecycle phases are the sweet spot for generative augmented
intelligence (AI+) because "utility” is more important than "perfection”

47

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g.

o Effectively capture/leverage data
generated throughout the SDLC

N

Defining
requirements
Meeting notes,

risk assessments,
project vision
statements

« €.g., many non-code artifacts can be

analyzed at scale by Al tools better/

faster/cheaper than by humans alone

Objectives Using LLMs

Development Testing and QA Deployment Continuous

of the product Prototypes, minimum Container images, maintenance and
Diagrams, required standards, pipeline, released improvements
software documents, benchmarks executables of the product
source code User stories, roadmaps,
end-user agreements
BY ORDER OF THE AIR FORCE MANUAL 91-119
SECRETARY OF THE AIR FORCE
> < 5 JUNE 2012
Safety

SAFETY DESIGN AND EVALUATION
CRITERIA FOR NUCLEAR WEAPON
SYSTEMS SOFTWARE

COMPLIANCE WITH THIS PUBLICATION IS MANDATORY

Instructions are clear & | Check for inconsistencies
complete to enable » within 91-119

nuclear surety * between 91-119 & other
relevant documents

ACCESSIBILITY: Publications and forms are available for downloading or ordering on the e-
Publishing website at www.e-Publishing.af.mil

RELEASABILITY: There are no releasability restrictions on this publication

Software Engineering Institute

48

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g. Agents

 Increase Al & automation tool support lan C;ain
for developers & other stakeholders g

throughout the SDLC

See docs.langchain.com/docs

https://docs.langchain.com/docs

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

A

« Re-envisioning the software devel-
opment lifecycle (SDLC), e.g.

o Increase AI & automation tool support
for developers & other stakeholders

MISRA Compliance:2020

th roug hOUt the SDLC 2E(I:<§1Erl?-grStandard
Rules for Developing Safe, Reliable, and Secure Systems

e e.g., check for compliance with relevant
policies & standards based on LLM-based
static analysis & other static analysis tools

See wiki.sei.cmu.edu/confluence/display/seccode &

misra.org.uk/app/uploads/2021/06/MISRA-Compliance-2020.pdf

https://wiki.sei.cmu.edu/confluence/display/seccode
https://misra.org.uk/app/uploads/2021/06/MISRA-Compliance-2020.pdf

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

~* PROMPT
"ENGINEERING

« Formalizing the discipline of “Prompt Different

Engineering”

/ Language
Models

Prompt#
; Pmmptsau,DAu.{

ompletion

See en.wikipedia.org/wiki/Prompt _engineering

https://en.wikipedia.org/wiki/Prompt_engineering

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt
Engineering”, e.q.

« Learning to “program” using natural
language

See en.wikipedia.org/wiki/Prompt _engineering

https://en.wikipedia.org/wiki/Prompt_engineering

Impact on AI-Augmented Software Development
« Key R&D challenges & opportunities include

i

o Formalizing the discipline of "Prompt &
Engineering”, e.q.

« Learning to “program” using natural
language

 Focus on “problem solving” not
traditional computer programming..

See www.youtube.com/watch?v=NrzB6Tb k2Y&list=PLZINgFYEMxp72Z00yrTNS6UtAXXYpgNGI&index=6

http://www.youtube.com/watch?v=NrzB6Tb_k2Y&list=PLZ9NgFYEMxp72Zo0yrTNS6utAXxYpqNGl&index=6

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

23:¥EVRAN';2R|ENTED PATTERN-ORIENTED
ARCHITECTURE ARCHITECTURE
Design Patterns § wm rm
oo . H
« Formalizing the discipline of “Prompt =
« | |

Engineering”, e.q.

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE
KDITTE] Patterns for Concurrent

and Networked Objects

« Codifying “prompt patterns”

Inspired by software patterns, which provide reusable solutions
to common problems that occur during software development,
providing a template to solve similar issues in various contexts

See www.dre.vanderbilt.edu/~schmidt/POSA

http://www.dre.vanderbilt.edu/~schmidt/POSA

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt
Engineering”, e.q.

« Codifying “prompt patterns”

A knowledge transfer method for inter-
acting wylarge language models (LLMs)

A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt
Department of Computer Science
Vanderbilt University, Tennessee
Nashville, TN, USA
{jules.white, quchen.fu, george.s.hays, michael.sandborn, carlos.olea, henry.gilbert,
ashraf.elnashar, jesse.spencer-smith, douglas.c.schmidt} @vanderbilt.edu

Abstract—Prompt engineering is an increasingly important
skill set needed to converse effectively with large language models
(LLMs), such as ChatGPT. Prompts are instructions given to an
LLM to enforce rules, automate processes, and ensure specific
qualities (and quantities) of generated output. Prompts are also
a form of progr ing that can the outputs and
interactions with an LLM.

This paper describes a catalog of prompt engineering tech-
niques presented in pattern form that have been applied to solve
common problems when conversing with LLMs. Prompt patterns
are a knowledge transfer method analogous to software patterns
since they provide reusable solutions to common problems faced
in a particular context, i.e., output generation and interaction
when working with LLMs.

This paper provides the following contributions to research on
prompt engineering that apply LLMs to automate software de-
velopment tasks. First, it provides a framework for documenting
patterns for structuring prompts to solve a range of problems
so that they can be adapted to different domains. Second, it
presents a catalog of patterns that have been applied successfully
to improve the outputs of LLM conversations. Third, it explains
how prompts can be built from multiple patterns and illustrates
prompt patterns that benefit from combination with other prompt
patterns.

Index Terms—large language models, prompt patterns, prompt
engineering

I. INTRODUCTION

Conversational large language models (LLMs) [1], such as
ChatGPT [2], have generated immense interest in a range
of domains for tasks ranging from answering questions on
medical licensing exams [3] to generating code snippets. This
paper focuses on enhancing the application of LLMs in several
domains, such as helping developers code effectively and
efficiently with unfamiliar APIs or allowing students to acquire
new coding skills and techniques.

LLMs are particularly promising in domains where humans
and Al tools work together as trustworthy collaborators to
more rapidly and reliably evolve software-reliant systems [4].
For example, LLMs are being integrated directly into software
tools, such as Github’s Co-Pilot [5]-[7] and included in inte-
grated development environments (IDEs), such as IntelliJ [8]
and Visual Studio Code, thereby allowing software teams to
access these tools directly from their preferred IDE.

A prompt [9] is a set of instructions provided to an
LLM that programs the LLM by customizing it and/or en-
hancing or refining its capabilities. A prompt can influence
subsequent interactions with—and output generated from—an

LLM by providing specific rules and guidelines for an LLM
conversation with a set of initial rules. In particular, a prompt
sets the context for the conversation and tells the LLM what
information is important and what the desired output form and
content should be.

For example, a prompt could specify that an LLM should
only generate code that follows a certain coding style or
programming paradigm. Likewise, it could specify that an
LLM should flag certain keywords or phrases in a generated
document and provide additional information related to those
keywords. By introducing these guidelines, prompts facilitate
more structured and nuanced outputs to aid a large variety of
software engineering tasks in the context of LLMs.

Prompt engineering is the means by which LLMs are
progr d via pr To demonstrate the power of
prompt engineering, we provide the following prompt:

Prompt: “From now on, I would like you to ask me
questions to deploy a Python application to AWS.
When you have enough information to deploy the
application, create a Python script to automate the
deployment.”

This example prompt causes ChatGPT to begin asking the
user questions about their software application. ChatGPT will
drive the question-asking process until it reaches a point where
it has sufficient information to generate a Python script that
automates deployment. This example demonstrates the pro-
gramming potential of prompts beyond conventional “generate
a method that does X” style prompts or “answer this quiz
question”.

Moreover, prompts can be engineered to program an LLM
to accomplish much more than simply dictating the output type
or filtering the information provided to the model. With the
right prompt, it is possible to create entirely new interaction
paradigms, such as having an LLM generate and give a quiz
associated with a software engineering concept or tool, or
even simulate a Linux terminal window. Moreover, prompts
have the potential for self-adaptation, suggesting other prompts
to gather additional information or generate related artifacts.
These advanced capabilities of prompts highlight the impor-
tance of engineering them to provide value beyond simple text
or code generation.

Prompt patterns are essential to effective prompt engi-
neering. A key contribution of this paper is the introduction
of prompt patterns to document successful approaches for

See arxiv.org/abs/2302.11382

https://arxiv.org/abs/2302.11382

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt

Engineering”, e.q.

TABLE 1
CLASSIFYING PROMPT PATTERNS FOR AUTOMATING SOFTWARE

ENGINEERING TASKS

Requirements Elicitation

Requirements Simulator
Specification Disambiguation
Change Request Simulation

System Design and Simulation

API Generator

API Simulator

Few-shot Example Generator
Domain-Specific Language (DSL) Creation
Architectural Possibilities

Code Quality

Code Clustering

Intermediate Abstraction
Principled Code
Hidden Assumptions

Refactoring

Pseudo-code Refactoring
Data-guided Refactoring

« Codifying “prompt patterns”

Define a pattern catalog for automating software
engineering tasks that is classified by the types
of problems they solve throughout the SDLC

See arxiv.org/abs/2303.07839

https://arxiv.org/abs/2303.07839

Impact on AI-Augmented Software Development

« Key R&D challenges & opportunities include

« Formalizing the discipline of “Prompt
. . ” Holistic
Engineering’, e.q. Prompt

Engineering

Engineering
Models & Methods

Construction

Testing

o Integrating canonical quality attributes
associated with software engineering

Engineering

Management Maintenance

Configuration
Management

See hbr.org/2023/06/ai-prompt-engineering-isnt-the-future

https://hbr.org/2023/06/ai-prompt-engineering-isnt-the-future

Applying Generative Al to

CS Courses at Vanderbilt

HOW | LEARNED:TO'STOP WORRYING
-

