
Key Factory Method Operators
in the Observable Class (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• These operators create reactive

Observable streams in various
ways from non-reactive input
sources
• e.g., just() &

fromCallable()

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

3

Key Factory Method
Operators in the
Observable Class

4

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes

Key Factory Method Operators in the Observable Class
static <T> Observable<T>
 just(T... data)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#just

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

5

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes
• The param(s) are the elements

to emit, as a varargs param

Key Factory Method Operators in the Observable Class
static <T> Observable<T>
 just(T... data)

See www.baeldung.com/java-varargs

https://www.baeldung.com/java-varargs

6

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes
• The param(s) are the elements

to emit, as a varargs param
• Returns a new Observable that’s

captured at “assembly time”
• i.e., it’s “eager”

Key Factory Method Operators in the Observable Class
static <T> Observable<T>
 just(T... data)

Contrast with the discussion of the Observable.fromCallable() operator later in this lesson

7

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes
• The param(s) are the elements

to emit, as a varargs param
• Returns a new Observable that’s

captured at “assembly time”
• Multiple elements can be emitted,

unlike the Single.just() operator

Key Factory Method Operators in the Observable Class
static <T> Observable<T>
 just(T... data)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#just

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

8

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes

• This factory method adapts
non-reactive input sources
into the reactive model

Key Factory Method Operators in the Observable Class

Observable
 .just(BigFraction.valueOf(100,3),
 BigFraction.valueOf(100,4),
 BigFraction.valueOf(100,2),
 BigFraction.valueOf(100,1))
 ...

Create an Observable stream
of four BigFraction objects

See Reactive/Observable/ex1/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex1/src/main/java/ObservableEx.java

9

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes

• This factory method adapts
non-reactive input sources
into the reactive model
• just() is evaluated eagerly

at “assembly time”

Key Factory Method Operators in the Observable Class

See proandroiddev.com/operator-fusion-in-rxjava-2-dcd6612cffae

https://proandroiddev.com/operator-fusion-in-rxjava-2-dcd6612cffae

10

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes

• This factory method adapts
non-reactive input sources
into the reactive model
• just() is evaluated eagerly

at “assembly time”
• It therefore always runs in the

context of the thread where the
Observable is instantiated

Key Factory Method Operators in the Observable Class

The fromIterable() & fromArray() factory method operators also evaluate eagerly

11

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes

• This factory method adapts
non-reactive input sources
into the reactive model

• Project Reactor’s Flux.just()
operator works the same

Key Factory Method Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#just

Flux
 .just(BigFraction.valueOf(100,3),
 BigFraction.valueOf(100,4),
 BigFraction.valueOf(100,2),
 BigFraction.valueOf(100,1))
 ...

Create a Flux stream of
four BigFraction objects

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

12

• The just() operator
• Creates an Observable that

emits the given element(s)
& then completes

• This factory method adapts
non-reactive input sources
into the reactive model

• Project Reactor’s Flux.just()
operator works the same

• Similar to Stream.of() factory
method in Java Streams

Key Factory Method Operators in the Observable Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of

Stream
 .of(BigFraction.valueOf(100,3),
 BigFraction.valueOf(100,4),
 BigFraction.valueOf(100,2),
 BigFraction.valueOf(100,1))
 ...Create a stream of 4 BigFraction objects

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

13

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things

Key Factory Method Operators in the Observable Class
static <T> Observable<T>
 fromCallable(Callable<? extends T>
 callable)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#fromCallable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

14

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things
• Invokes a Callable param

Key Factory Method Operators in the Observable Class
static <T> Observable<T>
 fromCallable(Callable<? extends T>
 callable)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

15

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things
• Invokes a Callable param
• The returned Observable

emits the value returned
from the Callable

Key Factory Method Operators in the Observable Class
static <T> Observable<T>
 fromCallable(Callable<? extends T>
 callable)

16

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things

• This factory method adapts
non-reactive input sources
into the reactive model

Key Factory Method Operators in the Observable Class

Observable
 .fromCallable
 (()
 -> BigFractionUtils
 .makeBigFraction(random,
 true))

Create an Observable that
emits one random BigFraction

See Reactive/Observable/ex1/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex1/src/main/java/ObservableEx.java

17

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things

• This factory method adapts
non-reactive input sources
into the reactive model

• This operator defers executing
the Callable until an observer
subscribes to the Observable
• i.e., it is “lazy”

Key Factory Method Operators in the Observable Class

Observable
 .fromCallable
 (()
 -> BigFractionUtils
 .makeBigFraction(random,
 true))

18

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things

• This factory method adapts
non-reactive input sources
into the reactive model

• This operator defers executing
the Callable until an observer
subscribes to the Observable
• i.e., it is “lazy”

Key Factory Method Operators in the Observable Class

Contrast with ”eager” Observable factory method operators earlier in this lesson

Observable
 .just(BigFraction.valueOf(100,3),
 BigFraction.valueOf(100,4),
 BigFraction.valueOf(100,2),
 BigFraction.valueOf(100,1))
 ...

Conversely, Observable.just() is “eager”

19

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things

• This factory method adapts
non-reactive input sources
into the reactive model

• This operator defers executing
the Callable until an observer
subscribes to the Observable

• Project Reactor’s operator Mono
.fromCallable() is similar

Key Factory Method Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#fromCallable

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

20

• The fromCallable() operator
• Returns an Observable that,

when an observer subscribes
to it, does certain things

• This factory method adapts
non-reactive input sources
into the reactive model

• This operator defers executing
the Callable until an observer
subscribes to the Observable

• Project Reactor’s operator Mono
.fromCallable() is similar

Key Factory Method Operators in the Observable Class

However, Project Reactor’s Flux
has no fromCallable() operator…

21

End of Key Factory Method
Operators in the Observable

Class (Part 1)

Key Transforming Operators
in the Observable Class (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

23

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• Transforming operators
• Transform the values and/

or types emitted by an
Observable
• e.g., map()

24

Key Transforming Operators
in the Observable Class

25

• The map() operator
• Transform the item(s) emitted

by this Observable

Key Transforming Operators in the Observable Class
<V> Observable<V> map
(Function<? super T,? extends V>
mapper)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#map

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

26

• The map() operator
• Transform the item(s) emitted

by this Observable
• Applies a synchronous function

to transform each item

Key Transforming Operators in the Observable Class
<V> Observable<V> map
(Function<? super T,? extends V>
mapper)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Function.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Function.html

27

• The map() operator
• Transform the item(s) emitted

by this Observable
• Applies a synchronous function

to transform each item
• map() can terminate if mapper

throws an exception

Key Transforming Operators in the Observable Class
<V> Observable<V> map
(Function<? super T,? extends V>
mapper)

28

• The map() operator
• Transform the item(s) emitted

by this Observable
• Applies a synchronous function

to transform each item
• Returns a transformed Observable

Key Transforming Operators in the Observable Class
<V> Observable<V> map
(Function<? super T,? extends V>
mapper)

29

• The map() operator
• Transform the item(s) emitted

by this Observable
• The # of output items must

match the # of input items

Key Transforming Operators in the Observable Class

Observable
 .fromIterable
 (bigFractionList)
 ...
 .map(fraction -> fraction
 .multiply(sBigReducedFrac))
 ...

Multiply each element in the Observable stream by a constant

See Reactive/Observable/ex1/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

30

• The map() operator
• Transform the item(s) emitted

by this Observable
• The # of output items must

match the # of input items
• map() can transform the type

and/or value of elements it
processes

Key Transforming Operators in the Observable Class

31

• The map() operator
• Transform the item(s) emitted

by this Observable
• The # of output items must

match the # of input items
• Project Reactor’s Flux.map()

operator works the same

Key Transforming Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#map

Flux
 .fromIterable
 (bigFractionList)
 ...
 .map(fraction -> fraction
 .multiply(sBigReducedFrac))
 ...

Multiply each element in the
Flux stream by a constant

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

32

• The map() operator
• Transform the item(s) emitted

by this Observable
• The # of output items must

match the # of input items
• Project Reactor’s Flux.map()

operator works the same
• Similar to Stream.map() method

in Java Streams

Key Transforming Operators in the Observable Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#map

List<String> collect = List
 .of("a", "b", "c").stream()
 .map(String::toUpperCase).toList();

Uppercase each
string in a stream

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

33

End of Key Transforming
Operators in the Observable

Class (Part 1)

Key Combining Operators
in the Observable Class (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

35

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• Transforming operators
• Action operators
• Combining operators
• These operators create an

Observable from multiple
iterations or sources
• e.g., mergeWith()

36

Key Combining Operators
in the Observable Class

37

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param

Key Combining Operators in the Observable Class
Observable<T> mergeWith
 (ObservableSource<? extends T>
 other)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#mergeWith

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

38

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param
• The param is the Observable

Source to merge with

Key Combining Operators in the Observable Class
Observable<T> mergeWith
 (ObservableSource<? extends T>
 other)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

39

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param
• The param is the Observable

Source to merge with
• Returns the new merged

Observable instance

Key Combining Operators in the Observable Class
Observable<T> mergeWith
 (ObservableSource<? extends T>
 other)

40

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param

• This operator combines items
emitted by multiple Observable
Sources so that they appear as
a single ObservableSource

Key Combining Operators in the Observable Class

mergeWith

Observable<BigFraction> o1 ...
Observable<BigFraction> o2 ...
o1.mergeWith(o2)...

See Reactive/Observable/ex1/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex1/src/main/java/ObservableEx.java

41

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param

• This operator combines items
emitted by multiple Observable
Sources so that they appear as
a single ObservableSource
• This merging may interleave

the items

Key Combining Operators in the Observable Class

mergeWith

42

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param

• This operator combines items
emitted by multiple Observable
Sources so that they appear as
a single ObservableSource
• This merging may interleave

the items
• Use concatWith() to avoid interleaving

Key Combining Operators in the Observable Class

concatWith

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#concatWith

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

43

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param

• This operator combines items
emitted by multiple Observable
Sources so that they appear as
a single ObservableSource

• Project Reactor’s operator Flux.
mergeWith() works the same

Key Combining Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#mergeWith

Flux<BigFraction> f1 ...
Flux<BigFraction> f2 ...
f1.mergeWith(f2)...

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

44

• The mergeWith() operator
• Merges the sequence of items

of this Observable with the
success value of the other param

• This operator combines items
emitted by multiple Observable
Sources so that they appear as
a single ObservableSource

• Project Reactor’s operator Flux.
mergeWith() works the same

• Similar to the Stream.concat()
method in Java Streams

Key Combining Operators in the Observable Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#concat

List<String> concats
 (List<String> l, int n) {
 Stream<String> s = Stream.empty();
 while (--n >= 0)
 s = Stream.concat(s, l.stream());
 return s.toList();
}

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

45

End of Key Combining
Operators in the

Observable Class (Part 1)

Key Suppressing Operators
in the Observable Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

47

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Concurrency & scheduler

operators
• Factory method operators
• Action operators
• Suppressing operators
• These operators create an

Observable and/or Single that
changes or ignores (portions of)
its payload
• e.g., filter()

48

Key Suppressing Operators
in the Observable Class

49

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate

Observable<T> filter
(Predicate<? super T> p)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#filter

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

50

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• If predicate test succeeds,

the value is emitted

Observable<T> filter
(Predicate<? super T> p)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Predicate.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Predicate.html

51

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• If predicate test succeeds,

the value is emitted
• If predicate test fails, the

value is ignored & a request
of 1 is made upstream

Observable<T> filter
(Predicate<? super T> p)

52

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• If predicate test succeeds,

the value is emitted
• If predicate test fails, the

value is ignored & a request
of 1 is made upstream

• Returns a new Observable
containing only values that
pass the predicate test

Observable<T> filter
(Predicate<? super T> p)

53

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• The # of output elements may

be < than # of input elements

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

Observable
.rangeLong(1, sMAX_ITERS)
...
.map(sGenerateRandomBigInteger)
.filter(bigInteger -> !bigInteger

.mod(BigInteger.TWO)

.equals(BigInteger.ZERO))

.subscribe(...);

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

54

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• The # of output elements may

be < than # of input elements

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

Observable
.rangeLong(1, sMAX_ITERS)
...
.map(sGenerateRandomBigInteger)
.filter(bigInteger -> !bigInteger

.mod(BigInteger.TWO)

.equals(BigInteger.ZERO))

.subscribe(...);

Only emit
odd numbers

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

55

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• The # of output elements may

be < than # of input elements
Observable
.rangeLong(1, sMAX_ITERS)
...
.map(sGenerateRandomBigInteger)
.filter(bigInteger -> !bigInteger

.mod(BigInteger.TWO)

.equals(BigInteger.ZERO))

.subscribe(...); filter() can’t change the type or
value of elements it processes

56

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• The # of output elements may

be < than # of input elements
• Project Reactor’s Flux.filter()

operator works the same way
Flux
.range(1, sMAX_ITERATIONS)
...
.map(sGenerateRandomBigInteger)
.filter(bigInteger -> !bigInteger.mod(BigInteger.TWO)

.equals(BigInteger.ZERO))
.subscribe(...);

57

Key Suppressing Operators in the Observable Class
• The filter() operator
• Evaluate each source value

against the given Predicate
• The # of output elements may

be < than # of input elements
• Project Reactor’s Flux.filter()

operator works the same way
• Similar to Stream.filter() method

in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#filter

List<Long> oddNumbers =
 LongStream
 .rangeClosed(1, 100)
 .filter(n -> (n & 1) != 0)
 .toList();

Only emit odd #’s

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

58

End of Key Suppressing
Operators in the
Observable Class

Key Transforming Operators
in the Observable Class (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

60

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by an Observable
• e.g., flatMap()

61

Key Transforming Operators
in the Observable Class

62

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously

Key Transforming Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap

<R> Observable<R> flatMap
(Function

 <? super T,
 ? extends ObservableSource
 <? extends R>>
 mapper)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

63

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

Key Transforming Operators in the Observable Class
<R> Observable<R> flatMap
(Function

 <? super T,
 ? extends ObservableSource
 <? extends R>>
 mapper)

64

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource
• An ObservableSource can be

consumed by an Observable

Key Transforming Operators in the Observable Class
<R> Observable<R> flatMap
(Function

 <? super T,
 ? extends ObservableSource
 <? extends R>>
 mapper)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

65

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted

Key Transforming Operators in the Observable Class
<R> Observable<R> flatMap
(Function

 <? super T,
 ? extends ObservableSource
 <? extends R>>
 mapper)

66

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted
• They thus can interleave

Key Transforming Operators in the Observable Class

67

Key Transforming Operators in the Observable Class

The # of output elements may
differ from the # of input elements

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted
• They thus can interleave

68

flatMap() can transform values and/
or types of elements it processes

Key Transforming Operators in the Observable Class
• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted
• They thus can interleave

69

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing

Key Transforming Operators in the Observable Class

See next part of the lesson on the RxJava flatMap() concurrency idiom

return Observable
 .fromIterable(bigFractionList)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn
 (Schedulers
 .computation()))

 .reduce(BigFraction::add)

70

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing

Key Transforming Operators in the Observable Class

See Reactive/Observable/ex3/src/main/java/ObserveEx.java

return Observable
 .fromIterable(bigFractionList)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn
 (Schedulers
 .computation()))

 .reduce(BigFraction::add)

Return an Observable that emits
multiplied BigFraction objects via the
RxJava flatMap() concurrency idiom

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

71

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way

Key Transforming Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

72

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams

Key Transforming Operators in the Observable Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#flatMap

List<String> a = List.of("d", "g");
List<String> b = List.of("a", "c");
Stream
 .of(a, b)
 .flatMap(List::stream)
 .sorted()
 .forEach(System.out::println);

Flatten, sort, & print
two lists of strings

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

73See stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams
• However, Stream.flatMap()

doesn’t support parallelism..

Key Transforming Operators in the Observable Class

List<String> a = List.of("d", "g");
List<String> b = List.of("a", "c");
Stream
 .of(a, b).parallel()
 .flatMap(List::stream)
 .sorted()
 .forEach(System.out::println);

https://stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

74

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams
• flatMap() doesn’t ensure the order

of the items in the resulting stream

Key Transforming Operators in the Observable Class

75

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams
• flatMap() doesn’t ensure the order

of the items in the resulting stream
• Use concatMap() if order matters

Key Transforming Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#concatMap

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

76

Comparing Observable
map() & flatMap()

77

• The map() vs. flatMap() operators
Comparing Observable map() & flatMap()

See en.wikipedia.org/wiki/Rock 'Em_Sock_'Em_Robots

https://en.wikipedia.org/wiki/Rock_%27Em_Sock_%27Em_Robots

78

• The map() vs. flatMap() operators
• map() transforms each value in an

Observable stream into one value

Comparing Observable map() & flatMap()

See medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

https://medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

79

• The map() vs. flatMap() operators
• map() transforms each value in an

Observable stream into one value
• e.g., used for synchronous 1-to-1

transformations

Comparing Observable map() & flatMap()

The # of output elements equal the # of input elements

80

• The map() vs. flatMap() operators
• map() transforms each value in an

Observable stream into one value
• flatMap() transforms each value in

an Observable stream into an
arbitrary number (0+) values

Comparing Observable map() & flatMap()

See medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

https://medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

81

• The map() vs. flatMap() operators
• map() transforms each value in an

Observable stream into one value
• flatMap() transforms each value in

an Observable stream into an
arbitrary number (0+) values
• e.g., intended for asynchronous

1-to-N transformations

Comparing Observable map() & flatMap()

The # of output elements may differ from the # of input elements

82

• The map() vs. flatMap() operators
• map() transforms each value in an

Observable stream into one value
• flatMap() transforms each value in

an Observable stream into an
arbitrary number (0+) values

• flatMap() is used extensively in
RxJava

Comparing Observable map() & flatMap()

83

End of Key Transforming
Operators in the

Observable Class (Part 2)

Key Error Handling Operators
in the Observable Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

85

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• Transforming operators
• Concurrency & scheduler

operators
• Error handling operators
• These operators handle

exceptions that occur in
an Observable chain
• e.g., onErrorReturnItem()

86

Key Error Handling Operators
in the Observable Class

87

Key Error Handling Operators in the Observable Class
• The onErrorReturnItem() operator
• Ends the flow with the given item

when the Observable fails (instead
of signaling the error via onError())

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#onErrorReturnItem

Observable<T>
onErrorReturnItem(T item)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

88

Key Error Handling Operators in the Observable Class
• The onErrorReturnItem() operator
• Ends the flow with the given item

when the Observable fails (instead
of signaling the error via onError())
• The param value is emitted along

via a regular onComplete() when
the Observable signals an exception

Observable<T>
onErrorReturnItem(T item)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Function.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Function.html

89

Key Error Handling Operators in the Observable Class
• The onErrorReturnItem() operator
• Ends the flow with the given item

when the Observable fails (instead
of signaling the error via onError())
• The param value is emitted along

via a regular onComplete() when
the Observable signals an exception

• Returns a new Observable that
emits the given item

Observable<T>
onErrorReturnItem(T item)

90

Key Error Handling Operators in the Observable Class
• The onErrorReturnItem() operator
• Ends the flow with the given item

when the Observable fails (instead
of signaling the error via onError())

• This operator “swallows” the
exception so it won’t propagate
up the call chain/stack further

See en.wikipedia.org/wiki/Error_hiding

https://en.wikipedia.org/wiki/Error_hiding

91

Key Error Handling Operators in the Observable Class
• The onErrorReturnItem() operator
• Ends the flow with the given item

when the Observable fails (instead
of signaling the error via onError())

• This operator “swallows” the
exception so it won’t propagate
up the call chain/stack further
return Observable
 .fromCallable(BigFraction
 .valueOf(Math.abs(sRANDOM.nextInt()), denominator))
 .subscribeOn(Schedulers.computation())
 .onErrorReturnItem(ZERO)
 .map(multiplyBigFractions); Convert ArithmeticException to

ZERO when denominator == 0

See Reactive/observable/ex3/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

92See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#onErrorReturn

Key Error Handling Operators in the Observable Class
• The onErrorReturnItem() operator
• Ends the flow with the given item

when the Observable fails (instead
of signaling the error via onError())

• This operator “swallows” the
exception so it won’t propagate
up the call chain/stack further

• Project Reactor’s operator Flux
.onErrorReturn() works the same

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

93

Key Error Handling Operators in the Observable Class
• The onErrorReturnItem() operator
• Ends the flow with the given item

when the Observable fails (instead
of signaling the error via onError())

• This operator “swallows” the
exception so it won’t propagate
up the call chain/stack further

• Project Reactor’s operator Flux
.onErrorReturn() works the same

• The Java CompletableFuture
exceptionally() method is similar

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#exceptionally

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

94

End of Key Error
Handling Operators in
the Observable Class

Key Blocking Operators
in the Single Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

96

Learning Objectives in this Part of the Lesson
• Recognize key Single operators
• Concurrency & scheduler operators
• Blocking operators
• These operators block awaiting

a Single to emit its value
• e.g., blockingGet()

The Single that emits a value typically runs asynchronously in a different thread of control

97

Key Blocking Operators
in the Single Class

98

• The blockingGet() operator
• Block until current Single signals

a success value or an exception

Key Blocking Operators in the Single Class
T blockingGet()

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

99

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• Returns the value received

Key Blocking Operators in the Single Class
T blockingGet()

100

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• Returns the value received
• If the source signals errors, the

original exception is thrown

Key Blocking Operators in the Single Class
T blockingGet()

101

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• Returns the value received
• If the source signals errors, the

original exception is thrown
• A checked exception is wrapped

in a RuntimeException

Key Blocking Operators in the Single Class
T blockingGet()

See docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

102

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• Returns the value received
• If the source signals errors, the

original exception is thrown
• There is no timed version of

blockingGet()

Key Blocking Operators in the Single Class
T blockingGet()

103

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• Returns the value received
• If the source signals errors, the

original exception is thrown
• There is no timed version of

blockingGet()
• However, there are timeout()

operators

Key Blocking Operators in the Single Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

https://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

104

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• Returns the value received
• If the source signals errors, the

original exception is thrown
• There is no timed version of

blockingGet()
• blockingGet() internally calls

subscribe() to initiate the Single
processing chain

Key Blocking Operators in the Single Class
final T blockingGet() {
 BlockingMultiObserver<T>
 observer = new
 BlockingMultiObserver<>();
 subscribe(observer);
 return observer.blockingGet();
}

See github.com/ReactiveX/RxJava/blob/3.x/src/main/java/io/reactivex/rxjava3/core/Single.java

https://github.com/ReactiveX/RxJava/blob/3.x/src/main/java/io/reactivex/rxjava3/core/Single.java

105

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• This operator does not operate by

default on a particular Scheduler

Key Blocking Operators in the Single Class

106

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• This operator does not operate by

default on a particular Scheduler
• However, the Single that emits a

value often runs asynchronously
in a different thread of control

Key Blocking Operators in the Single Class

107

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• This operator does not operate by

default on a particular Scheduler
• Should only be used if a value

is needed before proceeding

Key Blocking Operators in the Single Class
BigFraction result = Single
 .fromCallable(call)

 .subscribeOn
 (Schedulers.single())

 .blockingGet();

System.out.println
 (result::toMixedString);

Block caller until the back
ground operation completes

See Reactive/Single/ex2/src/main/java/SingleEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Single/ex2/src/main/java/SingleEx.java

108

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• This operator does not operate by

default on a particular Scheduler
• Should only be used if a value

is needed before proceeding
• Project Reactor’s operator Mono.

blockOptional() is similar
• i.e., it blocks indefinitely until a

next signal is received or the
Mono completes empty

Key Blocking Operators in the Single Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

109

• The blockingGet() operator
• Block until current Single signals

a success value or an exception
• This operator does not operate by

default on a particular Scheduler
• Should only be used if a value

is needed before proceeding
• Project Reactor’s operator Mono.

blockOptional() is similar
• Similar to the join() method in Java

CompletableFuture

Key Blocking Operators in the Single Class

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join

CompletableFuture<BigFraction> f
 = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 = new
 BigFraction(sF1);
 BigFraction bf2 = new
 BigFraction(sF2);
 return bf1.multiply(bf2);
 });
...
System.out.println
 ("result = "
 + f.join().toMixedString());

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

110

End of Key Blocking
Operators in the Single Class

Overview of the ParallelFlowable Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

112

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the ParallelFlowable class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

113

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the ParallelFlowable class
• Simplifies parallel processing cf.

the flatMap() concurrency idiom

See earlier lesson on “Key Transforming Operators in the Observable Class (Part 3)”

return Flowable
 .fromArray(bigFractionArray)
 .parallel()
 .runOn(Schedulers.computation())
 .map(bf -> bf.multiply(sBigReducedFrac))
 .reduce(BigFraction::add)
 .firstElement()...

return Observable
 .fromArray(bigFractionArray)
 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))
 .subscribeOn(Schedulers
 .computation()))
 .reduce(BigFraction::add)...

114

Overview of the
ParallelFlowable Class

115

• The RxJava flatMap() concurrency
idiom performs relatively well, but
is also somewhat convoluted..

Overview of the ParallelFlowable Class

See previous lessons on “Key Transforming Operators in the Observable Class (Part 3)”

Return an Observable that emits
multiplied BigFraction objects via the
RxJava flatMap() concurrency idiom

return Observable
 .fromArray(bigFractionArray)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn(Schedulers
 .computation()))

 .reduce(BigFraction::add)
 ...

116

• The RxJava flatMap() concurrency
idiom performs relatively well, but
is also somewhat convoluted..
• Particularly in comparison with

Java parallel streams

Overview of the ParallelFlowable Class

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

return Stream
 .of(bigFractionArray)

 .parallel()

 .map(bf -> bf
 .multiply(sBigFraction))

 .reduce(ZERO, BigFraction::add)

return Observable
 .fromArray(bigFractionArray)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn(Schedulers
 .computation()))

 .reduce(BigFraction::add)
 ...

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

117

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel

Overview of the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

118See dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams

Overview of the ParallelFlowable Class

toList()

Parallel Streams
…

filter(not(this::urlCached))

map(this::downloadImage)

mapMulti(this::applyFilters)

https://dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

119

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• i.e., intended for “embarrassingly

parallel” tasks

Overview of the ParallelFlowable Class

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

http://en.wikipedia.org/wiki/Embarrassingly_parallel

120See dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom

Overview of the ParallelFlowable Class

https://dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

121

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flowable.parallel() factory

method creates a ParallelFlowable

Overview of the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#parallel

ParallelFlowable<T> parallel()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

122

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flowable.parallel() factory

method creates a ParallelFlowable
• Elements are processed in parallel

via ‘rails’ in round-robin order

Overview of the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#parallel

ParallelFlowable<T> parallel()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

123

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flowable.parallel() factory

method creates a ParallelFlowable
• Elements are processed in parallel

via ‘rails’ in round-robin order
• By default, the # of rails is set to the # of available CPU cores

Overview of the ParallelFlowable Class

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html

124

• ParallelFlowable is a subset of Flowable
that provides a more concise means of
processing multiple values in parallel
• Similar to Java parallel streams
• Avoids the convoluted syntax of

the flatMap() concurrency idiom
• The Flowable.parallel() factory

method creates a ParallelFlowable
• Elements are processed in parallel

via ‘rails’ in round-robin order
• By default, the # of rails is set to the # of available CPU cores
• This setting can be changed programmatically

Overview of the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#parallel

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

125

Key Operators in the
ParallelFlowable Class

126

• ParallelFlowable supports a subset
of Flowable operators that process
elements in parallel across the rails
• e.g., map(), filter(), concatMap(),

flatMap(), collect(), & reduce()

Key Operators in the ParallelFlowable Class

See github.com/ReactiveX/RxJava/wiki/Parallel-flows

https://github.com/ReactiveX/RxJava/wiki/Parallel-flows

127

• The runOn() operator specifies
where each 'rail' will observe its
incoming elements

Key Operators in the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html#runOn

ParallelFlowable<T> runOn(Scheduler
 scheduler)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

128See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

• The runOn() operator specifies
where each 'rail' will observe its
incoming elements
• Specified via a Scheduler that

performs no work-stealing

Key Operators in the ParallelFlowable Class
ParallelFlowable<T> runOn(Scheduler
 scheduler)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

129

• The runOn() operator specifies
where each 'rail' will observe its
incoming elements
• Specified via a Scheduler that

performs no work-stealing
• Returns the new Parallel

Flowable instance

Key Operators in the ParallelFlowable Class
ParallelFlowable<T> runOn(Scheduler
 scheduler)

130

• A ParallelFlowable can be converted
back into a Flowable via sequential()

Key Operators in the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html#sequential

Flowable<T> sequential()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

131

• A ParallelFlowable can be converted
back into a Flowable via sequential()
• Merge the values from each 'rail' in

a round-robin fashion

Key Operators in the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html#sequential

Flowable<T> sequential()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

132

• ParallelFlowable.reduce() can also be
used to convert back into a Flowable

Key Operators in the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

133

• ParallelFlowable.reduce() can also be
used to convert back into a Flowable
• Reduces all values within a 'rail’ &

across 'rails' into a Flowable

Key Operators in the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html#reduce

Flowable<T> reduce
 (BiFunction<T,T,T> reducer)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

134

• ParallelFlowable.reduce() can also be
used to convert back into a Flowable
• Reduces all values within a 'rail’ &

across 'rails' into a Flowable
• The BiFunction param reduces two

values into one successively

Key Operators in the ParallelFlowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

Flowable<T> reduce
 (BiFunction<T,T,T> reducer)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

135

• ParallelFlowable.reduce() can also be
used to convert back into a Flowable
• Reduces all values within a 'rail’ &

across 'rails' into a Flowable
• The BiFunction param reduces two

values into one successively
• Return a regular Flowable that

contains just one element

Key Operators in the ParallelFlowable Class
Flowable<T> reduce
 (BiFunction<T,T,T> reducer)

136

End of Overview of the
ParallelFlowable Class

Key Scheduler Operators for
RxJava Reactive Types (Part 3)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

138

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—ParallelFlowables
• Scheduler operators
• These operators provide the

context to run other operators
in designated threads & thread
pools
• e.g., Schedulers.io()

These operators also work with the Flowable, ParallelFlowable, Single, & Maybe classes

139

Key Scheduler Operators
for RxJava Reactive Types

140See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#io

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

Key Scheduler Operators for RxJava Reactive Types
static Scheduler io()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

141

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for I/O-bound work

Key Scheduler Operators for RxJava Reactive Types
static Scheduler io()

142See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking

operations

Key Scheduler Operators for RxJava Reactive Types

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

143See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking

operations
• i.e., I/O-bound tasks not

compute-/CPU-bound tasks!

Key Scheduler Operators for RxJava Reactive Types

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

144

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking

operations
• Either starts a new thread or

reuses an idle one from a cache

Key Scheduler Operators for RxJava Reactive Types

145

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for I/O-bound work
• Optimized for blocking

operations
• Either starts a new thread or

reuses an idle one from a cache
• The goal is to maximally utilize

the CPU cores

Key Scheduler Operators for RxJava Reactive Types

146See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex4

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

Download images from remote
web servers in parallel & store
them on the local computer

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex4

147

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

Create a Flowable containing URLs to
download from remote web servers

148

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

Convert the Flowable
into a ParallelFlowable

149

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html#runOn

Designate the I/O Scheduler that will
download & store each image in parallel

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

150

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

Download & store
images in parallel

151

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

Merge the values from each 'rail' in
a round-robin fashion & expose it
as a regular Flowable sequence

152

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

Collect the Flowable into a List

153

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

Key Scheduler Operators for RxJava Reactive Types
return Options.instance()
 .getUrlFlowable()

 .parallel()

 .runOn(Schedulers.io())

 .map(downloadAndStoreImage)

 .sequential()

 .collect(Collectors.toList())

 .doOnSuccess(...)

Handle the final ‘reduced’ results

154

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

• Implemented via “daemon threads”
• i.e., won’t prevent the app from

exiting even if its work isn’t done

Key Scheduler Operators for RxJava Reactive Types

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

155

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

• Implemented via “daemon threads”
• The Schedulers.boundedElastic()

operator in Project Reactor is similar

Key Scheduler Operators for RxJava Reactive Types

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#boundedElastic

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

156

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

• Implemented via “daemon threads”
• The Schedulers.boundedElastic()

operator in Project Reactor is similar
• The Java common fork-join pool is also similar

Key Scheduler Operators for RxJava Reactive Types

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

157

• The Schedulers.io() operator
• Hosts a variable-size pool of single

-threaded Executor Service-based
workers

• Used for making network calls, file
I/O, database operations, etc.

• Implemented via “daemon threads”
• The Schedulers.boundedElastic()

operator in Project Reactor is similar
• The Java common fork-join pool is also similar
• When used with the ManagedBlocker mechanism..

Key Scheduler Operators for RxJava Reactive Types

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

158

End of Key Scheduler
Operators for RxJava

Reactive Types (Part 3)

Key Composing Operators
in the Flowable Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

160

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—ParallelFlowables
• Scheduler operators
• Composing operators
• These operators make it possible

to implement custom Flowable
operators
• e.g., compose()

See github.com/ReactiveX/RxJava/wiki/Implementing-Your-Own-Operators

https://github.com/ReactiveX/RxJava/wiki/Implementing-Your-Own-Operators

161

Key Composing Operators
in the Flowable Class

162

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function

Key Composing Operators in the Flowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#compose

<R> Flowable<R> compose
(FlowableTransformer

 <? super T,
 ? extends R>

composer)

https://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

163

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• This function param transforms

the current Flowable

Key Composing Operators in the Flowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/FlowableTransformer.html

<R> Flowable<R> compose
(FlowableTransformer

 <? super T,
 ? extends R>

composer)

https://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/FlowableTransformer.html

164

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• This function param transforms

the current Flowable
• Returns a transformed Flowable

Key Composing Operators in the Flowable Class
<R> Flowable<R> compose
(FlowableTransformer

 <? super T,
 ? extends R>

composer)

165

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• Can be used to define “custom”

operators that are chained together
alongside standard RxJava operators

Key Composing Operators in the Flowable Class

See blog.danlew.net/2015/03/02/dont-break-the-chain

https://blog.danlew.net/2015/03/02/dont-break-the-chain

166

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• Can be used to define “custom”

operators that are chained together
alongside standard RxJava operators

Key Composing Operators in the Flowable Class

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex5

var rateF = Flowable
 .just("LDN:NYC")
 .parallel()
 .compose(RxUtils
 .commonPoolFlowable())
 .map(this::findBestPrice)
 .sequential()
 .timeout(2,
 TimeUnit.SECONDS,
 sDEFAULT_RATE_F);

Asynchronously determine exchange
rate from British pounds to US dollars
via the Java common fork-Join pool

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex5

167

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• Can be used to define “custom”

operators that are chained together
alongside standard RxJava operators

Key Composing Operators in the Flowable Class

See en.wikipedia.org/wiki/Decorator_pattern

Implements the Decorator
pattern that adds behavior
to an object dynamically

var rateF = Flowable
 .just("LDN:NYC")
 .parallel()
 .compose(RxUtils
 .commonPoolFlowable())
 .map(this::findBestPrice)
 .sequential()
 .timeout(2,
 TimeUnit.SECONDS,
 sDEFAULT_RATE_F);

https://en.wikipedia.org/wiki/Decorator_pattern

168

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• Can be used to define “custom”

operators that are chained together
alongside standard RxJava operators

• Does not operate by default on a
particular Scheduler

Key Composing Operators in the Flowable Class

169

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• Can be used to define “custom”

operators that are chained together
alongside standard RxJava operators

• Does not operate by default on a
particular Scheduler

• Project Reactor’s operator Flux
.transformDeferred() works the same

Key Composing Operators in the Flowable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#transformDeferred

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

170

• The compose() operator
• Transform the Flowable by applying

the FlowableTransformer function
• Can be used to define “custom”

operators that are chained together
alongside standard RxJava operators

• Does not operate by default on a
particular Scheduler

• Project Reactor’s operator Flux
.transformDeferred() works the same

• The proposed Java Streams’ Gatherer
API is similar

Key Composing Operators in the Flowable Class

See openjdk.org/jeps/461

https://openjdk.org/jeps/461

171

End of Key Composing
Operators in the
Flowable Class

Applying Key Operators in the
Flowable Class: Case Study ex5

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

173

Learning Objectives in this Part of the Lesson
• Case study ex5 shows how to

apply timeouts & compose() with
the async Single & ParallelFlowable
classes in the RxJava framework

var rateF = Flowable
 .just("LDN:NYC")
 .parallel()
 .compose(RxUtils
 .commonPoolFlowable())
 .map(this::findBestPrice)
 .sequential()
 .timeout(2,
 TimeUnit.SECONDS,
 sDEFAULT_RATE_F);

174

Applying Key Operators in
the Flowable Class to ex5

175

Applying Key Operators in the Flowable Class to ex5

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex5

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex5

176

End of Applying Key
Operators in the Flowable

Class: Case Study ex5

