
Key Terminal Operators
in the Observable Class (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• Transforming operators
• Action operators
• Combining operators
• Terminal operators
• Terminate an Observable stream

& trigger all the processing of
operators in the stream
• e.g., blockingSubscribe()

3

Key Terminal Operators
in the Observable Class

4

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable

Key Terminal Operators in the Observable Class
void blockingSubscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#blockingSubscribe

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

5

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion

Key Terminal Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html

void blockingSubscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html

6

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion
• This subscription requests

“unbounded demand”
• i.e., Long.MAX_VALUE

Key Terminal Operators in the Observable Class
void blockingSubscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

7

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion
• This subscription requests

“unbounded demand”
• Signals emitted to this

operator are represented by the following regular expression:

Key Terminal Operators in the Observable Class

onNext()*(onComplete()|onError())?

8

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class
Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFrac))

 .blockingSubscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

Initiate processing
& handle events

See Reactive/Observable/ex1/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex1/src/main/java/ObservableEx.java

9

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class
Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFrac))

 .blockingSubscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

Normal
processing

10

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class
Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFrac))

 .blockingSubscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

Error
Processing

11

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class
Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFrac))

 .blockingSubscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

Completion
Processing

12

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain
• Calling this operator will block

the caller thread
• Until the upstream terminates

normally or with an error

Key Terminal Operators in the Observable Class

13

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain
• Calling this operator will block

the caller thread
• Oddly, there is no equivalent

operator in Project Reactor..

Key Terminal Operators in the Observable Class

14

• The blockingSubscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain
• Calling this operator will block

the caller thread
• Oddly, there is no equivalent

operator in Project Reactor..
• This omission complicates testing

a bit, until you’re comfortable
with StepVerifier

Key Terminal Operators in the Observable Class

See projectreactor.io/docs/test/release/api/reactor/test/StepVerifier.html

https://projectreactor.io/docs/test/release/api/reactor/test/StepVerifier.html

15

End of Key Terminal
Operators in the

Observable Class (Part 1)

Key Concurrency Operators for
the Observable Class (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

17

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Concurrency operators
• These operators arrange to run

other operators in designated
threads & thread pools
• e.g., subscribeOn()

& observeOn()

18

Key Concurrency Operators
in the Observable Class

19

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker

Key Concurrency Operators in the Observable Class
Observable<T>
subscribeOn(Scheduler scheduler)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#subscribeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

20

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker
• The scheduler param indicates

what thread to perform the
operation on

Key Concurrency Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Scheduler.html

Observable<T>
subscribeOn(Scheduler scheduler)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Scheduler.html

21

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker
• The scheduler param indicates

what thread to perform the
operation on
• Scheduler is parameterized so

that these mechanisms can also
be reused in the Single class

Key Concurrency Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

Observable<T>
subscribeOn(Scheduler scheduler)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

22

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker
• The scheduler param indicates

what thread to perform the
operation on

• Returns the Observable requesting
async processing

Key Concurrency Operators in the Observable Class
Observable<T>
subscribeOn(Scheduler scheduler)

23

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker

• The subscribeOn() semantics
are a bit unusual

Key Concurrency Operators in the Observable Class

24

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker

• The subscribeOn() semantics
are a bit unusual
• Placing this operator in a chain

impacts the execution context
of the onNext(), onError(), &
onComplete() signals

Key Concurrency Operators in the Observable Class
Observable
 .range(1, sMAX_ITERATIONS)
 .subscribeOn(Schedulers
 .newThread())
 .map(__ -> BigInteger
 .valueOf(lowerBound + rand
 .nextInt(sMAX_ITERATIONS)))
 .doOnNext(s ->
 ObservableEx.print(s, sb))
 .subscribe(emitter::next,
 error ->
 emitter.complete(),
 emitter::complete);

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/ObservableEx.java

25

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker

• The subscribeOn() semantics
are a bit unusual
• Placing this operator in a chain

impacts the execution context
of the onNext(), onError(), &
onComplete() signals

Key Concurrency Operators in the Observable Class
Observable
 .range(1, sMAX_ITERATIONS)
 .map(__ -> BigInteger
 .valueOf(lowerBound + rand
 .nextInt(sMAX_ITERATIONS)))
 .doOnNext(s ->
 ObservableEx.print(s, sb))
 .subscribeOn(Schedulers
 .newThread())
 .subscribe(emitter::next,
 error ->
 emitter.complete(),
 emitter::complete);

subscribeOn() can appear later in
the chain & have the same effect

26

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker

• The subscribeOn() semantics
are a bit unusual
• Placing this operator in a chain

impacts the execution context
of the onNext(), onError(), &
onComplete() signals
• However, if an observeOn() operator appears later in the chain that

can change the threading context where the rest of the operators in
the chain below it execute (observeOn() can appear multiple times)

Key Concurrency Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

27

• The subscribeOn() operator
• Run the subscribe(), request(), &

onSubscribe() methods on the
specified Scheduler worker

• The subscribeOn() semantics
are a bit unusual

• Project Reactor’s operator Flux.
subscribeOn() works the same

Key Concurrency Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#subscribeOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

28

• The observeOn() operator
• Run the onNext(), onComplete(),

& onError() methods on a supplied
Scheduler worker

Key Concurrency Operators in the Observable Class
Observable<T>
observeOn(Scheduler scheduler)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

29

• The observeOn() operator
• Run the onNext(), onComplete(),

& onError() methods on a supplied
Scheduler worker
• The scheduler param indicates

what thread to perform the
operation on

Key Concurrency Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Scheduler.html

Observable<T>
observeOn(Scheduler scheduler)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Scheduler.html

30

• The observeOn() operator
• Run the onNext(), onComplete(),

& onError() methods on a supplied
Scheduler worker
• The scheduler param indicates

what thread to perform the
operation on

• Returns the Observable
requesting async processing

Key Concurrency Operators in the Observable Class
Observable<T>
observeOn(Scheduler scheduler)

31

• The observeOn() operator
• Run the onNext(), onComplete(),

& onError() methods on a supplied
Scheduler worker

• The observeOn() semantics
are fairly straightforward

Key Concurrency Operators in the Observable Class

32

• The observeOn() operator
• Run the onNext(), onComplete(),

& onError() methods on a supplied
Scheduler worker

• The observeOn() semantics
are fairly straightforward
• It influences the threading

context where the rest of the
operators in the chain below
it execute
• i.e., up to a new occurrence of

observeOn() in a chain (if any)

Key Concurrency Operators in the Observable Class
return Observable
 .create(ObservableEx::emitAsync)
 .observeOn(Schedulers
 .newThread())
 .map(bi -> ObservableEx
 .checkIfPrime(bi, sb))
 .doOnNext(bi -> ObservableEx
 .processResult(bi, sb))
 .doOnComplete(() ->
 BigFractionUtils
 .display(sb.toString()))
 .count()
 .ignoreElement();

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/ObservableEx.java

33

• The observeOn() operator
• Run the onNext(), onComplete(),

& onError() methods on a supplied
Scheduler worker

• The observeOn() semantics
are fairly straightforward

• Project Reactor’s operator Flux.
publishOn() works the same

Key Concurrency Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

34

• The observeOn() operator
• Run the onNext(), onComplete(),

& onError() methods on a supplied
Scheduler worker

• The observeOn() semantics
are fairly straightforward

• Project Reactor’s operator Flux.
publishOn() works the same
• It’s unclear why this operator is

named differently from RxJava’s
observeOn() operator

Key Concurrency Operators in the Observable Class

35

End of Key Concurrency
Operators for the

Observable Class (Part 1)

Key Suppressing Operators
in the Observable Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

37

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Concurrency & scheduler

operators
• Factory method operators
• Action operators
• Suppressing operators
• These operators create an

Observable and/or Single that
changes or ignores (portions of)
its payload
• e.g., take() &

ignoreElements()

38

Key Suppressing Operators
in the Observable Class

39

Key Suppressing Operators in the Observable Class
• The take() operator
• Take only the first N values

from this Observable, if available

Observable<T>
take(long n)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#take

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

40

Key Suppressing Operators in the Observable Class
• The take() operator
• Take only the first N values

from this Observable, if available
• The param is the # of items

to emit from this Observable

Observable<T>
take(long n)

41

Key Suppressing Operators in the Observable Class
• The take() operator
• Take only the first N values

from this Observable, if available
• The param is the # of items

to emit from this Observable
• Returns an Observable limited

to size N

Observable<T>
take(long n)

42

Key Suppressing Operators in the Observable Class
• The take() operator
• Take only the first N values

from this Observable, if available
• Used to limit otherwise “infinite”

streams

See earlier discussion of the Observable.interval() methodSee previous discussion of the Observable.interval() method

Observable
 .interval(sSLEEP.toMillis(),
 MILLISECONDS)
 ...
 .take(sMAX_ITERATIONS)

Generate an infinite series of integers
periodically in a background thread

43See Reactive/Observable/ex2/src/main/java/ObservableEx.java

Key Suppressing Operators in the Observable Class
• The take() operator
• Take only the first N values

from this Observable, if available
• Used to limit otherwise “infinite”

streams

Observable
 .interval(sSLEEP.toMillis(),
 MILLISECONDS)
 ...
 .take(sMAX_ITERATIONS)

Stop emitting after
sMAX_ITERATIONS

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

44

Key Suppressing Operators in the Observable Class
• The take() operator
• Take only the first N values

from this Observable, if available
• Used to limit otherwise “infinite”

streams
• Project Reactor’s Flux.take()

operator works the same

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#take

Flux
 .interval
 (sSLEEP_DURATION)
 ...
 .take(sMAX_ITERATIONS)
 ...

Only process sMAX_ITERATIONS #
of emitted values from interval()

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

45

Key Suppressing Operators in the Observable Class
• The take() operator
• Take only the first N values

from this Observable, if available
• Used to limit otherwise “infinite”

streams
• Project Reactor’s Flux.take()

operator works the same
• Similar to Stream.limit() in

Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit

List<Long> oddNumbers = Stream
 .iterate(1L, l -> l + 1)
 .filter(n -> (n & 1) != 0)
 .limit(100)
 .collect(toList());

Only emit 100 odd #’s

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

46See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#ignoreElements

Key Suppressing Operators in the Observable Class
• The ignoreElements() operator
• Ignores all items emitted by the

current Observable

Completable
ignoreElements()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

47See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#ignoreElements

Key Suppressing Operators in the Observable Class
• The ignoreElements() operator
• Ignores all items emitted by the

current Observable
• It only calls onComplete()

or onError()
• But not onNext()!

Completable
ignoreElements()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

48

Key Suppressing Operators in the Observable Class
• The ignoreElements() operator
• Ignores all items emitted by the

current Observable
• It only calls onComplete()

or onError()
• Returns a new Completable

instance
• i.e., emits no value, but

only completion or error

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

Completable
ignoreElements()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

49

Key Suppressing Operators in the Observable Class
• The ignoreElements() operator
• Ignores all items emitted by the

current Observable
• This “data-suppressing” operator

ignores its payload
return Observable
 .create(ObservableEx::emitInterval)
 .map(bigInteger -> ObservableEx
 .checkIfPrime(bigInteger, sb))
 .doOnComplete(() -> BigFractionUtils
 .display(sb.toString()))
 .ignoreElements();

Indicate an async operation completed

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

50See Reactive/Observable/ex2/src/main/java/utils/AsyncTaskBarrier.java

Key Suppressing Operators in the Observable Class
• The ignoreElements() operator
• Ignores all items emitted by the

current Observable
• This “data-suppressing” operator

ignores its payload
• Used by the AsyncTaskBarrier

framework to determine when
an async task completes

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/utils/AsyncTaskBarrier.java

51

Key Suppressing Operators in the Observable Class
• The ignoreElements() operator
• Ignores all items emitted by the

current Observable
• This “data-suppressing” operator

ignores its payload
• Project Reactor doesn’t really have an

equivalent, though its then() operator
can be used in a similar way

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#then

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

52

Key Suppressing Operators in the Observable Class
• The ignoreElements() operator
• Ignores all items emitted by the

current Observable
• This “data-suppressing” operator

ignores its payload
• Project Reactor doesn’t really have an

equivalent, though its then() operator
can be used in a similar way
• Also used by the AsyncTaskBarrier

to determine when an async task
completes

See Reactive/flux/ex2/src/main/java/utils/AsyncTaskBarrier.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/utils/AsyncTaskBarrier.java

53

End of Key Suppressing
Operators in the
Observable Class

Key Terminal Operators
in the Observable Class (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

55

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Concurrency & scheduler

operators
• Factory method operators
• Action operators
• Suppressing operators
• Terminal operators
• Terminate an Observable stream

& trigger all the processing
of operators in the stream
• e.g., subscribe()

The subscribe() operator is non-blocking, unlike blockingSubscribe()

56

Key Terminal Operators
in the Observable Class

57

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable

Key Terminal Operators in the Observable Class
Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#subscribe

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

58

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion

Key Terminal Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html

Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html

59

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion
• This subscription requests

unbounded demand
• i.e., Long.MAX_VALUE

Key Terminal Operators in the Observable Class
Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

60

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion
• This subscription requests

unbounded demand
• Signals emitted to this

operator are represented by the following regular expression:

Key Terminal Operators in the Observable Class

onNext()*(onComplete()|onError())?

61

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion

• A Disposable is returned, which
indicates a task or resource that
can be cancelled/disposed

Key Terminal Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/disposables/Disposable.html

Disposable subscribe
(Consumer<? super T> consumer,
Consumer<? super Throwable>
errorConsumer,

Runnable completeConsumer)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/disposables/Disposable.html

62

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• The params consume all

elements in the sequence,
handle errors, & react to
completion

• A Disposable is returned, which
indicates a task or resource that
can be cancelled/disposed
• Disposables can be accumulated

& disposed in one fell swoop!

Key Terminal Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/disposables/CompositeDisposable.html

CompositeDisposable
mDisposables

 (mPublisherScheduler,
 mSubscriberScheduler,
 mSubscriber);
...

mDisposables.dispose();

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/disposables/CompositeDisposable.html

63

Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFraction))

 .subscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class

Initiate stream
processing &
handle events

See Reactive/Obervable/ex2/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/ObservableEx.java

64

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class
Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFraction))

 .subscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

Normal
processing

65

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class
Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFraction))

 .subscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

Error
Processing

66

Observable
 .fromIterable(bigFractionList)

 .map(fraction -> fraction
 .multiply(sBigReducedFraction))

 .subscribe
 (fraction -> sb.append(" = "
 + fraction.toMixedString()
 + "\n"),
 error -> {
 sb.append("error"); ...
 },
 () -> BigFractionUtils
 .display(sb.toString()));

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain

Key Terminal Operators in the Observable Class

Completion
Processing

67

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain
• Calling this operator will not

block the caller thread
• Until upstream terminates

normally or with an error

Key Terminal Operators in the Observable Class

68

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain
• Calling this operator will not

block the caller thread
• Until upstream terminates

normally or with an error
• These semantics motivate the

need for the AsyncTaskBarrier
framework!

Key Terminal Operators in the Observable Class

See Reactive/Observable/ex2/src/main/java/utils/AsyncTaskBarrier.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/utils/AsyncTaskBarrier.java

69

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain
• Calling this operator will not

block the caller thread
• Other versions of subscribe()

support different capabilities

Key Terminal Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#subscribe

void subscribe
(Observer<? super T> observer)

Subscribes the given Observer to
this ObservableSource instance,

which provides additional capabilities
for receiving push-based notifications

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

70

• The subscribe() operator
• Subscribe Consumers & a

Runnable to this Observable
• This operator triggers all

the processing in a chain
• Calling this operator will not

block the caller thread
• Other versions of subscribe()

support different capabilities
• Project Reactor’s operator Flux

.subscribe() works the same

Key Terminal Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#subscribe

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

71

End of Key Terminal
Operators in the

Observable Class (Part 2)

Key Transforming Operators
in the Observable Class (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

73

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by an Observable
• e.g., flatMapCompletable()

74

Key Transforming Operators
in the Observable Class

75

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMapCompletable

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

76

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable, e.g.,
• Maps each element of the

current Observable into
CompletableSource objects

77

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/CompletableSource.html

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable, e.g.,
• Maps each element of the

current Observable into
CompletableSource objects

• Subscribes to them & waits for
the completion of the upstream
& all CompletableSource objects

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/CompletableSource.html

78

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable, e.g.,
• Maps each element of the

current Observable into
CompletableSource objects

• Subscribes to them & waits for
the completion of the upstream
& all CompletableSource objects

• Returns the new Completable
instance

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

79

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

See medium.com/@daniel.rodak/combining-rxjava2-completable-with-observable-6dda410a3c83

mailto:medium.com/@daniel.rodak/combining-rxjava2-completable-with-observable-6dda410a3c83

80

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())
• Used to integrate w/the RxJava

AsyncTaskBarrier framework

See Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

81

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())
• Used to integrate w/the RxJava

AsyncTaskBarrier framework
• i.e., the Completable isn’t

triggered until all async
processing is finished

Observable
 .fromIterable(sTasks)

 .map(Supplier::get)

 .flatMapCompletable(c -> c)

 .toSingleDefault((long)
 sTasks.size());

See Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

Map each Observable element into a
CompletableSource, subscribes to them,

& wait until the upstream & all
CompletableSource objects complete

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

82

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()

83

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()
• However, Project Reactor’s Flux.

then() & Mono.then() operators
provide a similar capability when used in conjunction with flatMap()

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#then

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

84

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()
• However, Project Reactor’s Flux.

then() & Mono.then() operators
provide a similar capability when used in conjunction with flatMap()
• Used to integrate w/the Project Reactor AsyncTaskBarrier framework

Key Transforming Operators in the Observable Class

See Reactive/flux/ex3/src/main/java/utils/AsyncTaskBarrier.java

Flux
 .fromIterable(sTasks)

 .flatMap(Supplier::get)

 .collectList()

 .onErrorContinue(errorHandler)

 .flatMap(__ -> ...);

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/utils/AsyncTaskBarrier.java

85

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()

• The CompletableFuture.allOf()
method can be combined with
the Java Streams collector
framework for a similar effect

Stream
 .generate(() ->
 makeBigFraction
 (new Random(), false))

 .limit(sMAX_FRACTIONS)

 .map(reduceAndMultiplyFraction)

 .collect(FuturesCollector
 .toFuture())

 .thenAccept
 (this::sortAndPrintList);

See Java8/ex19/src/main/java/utils/FuturesCollector.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex19/src/main/java/utils/FuturesCollector.java

86

End of Key Transforming
Operators in the

Observable Class (Part 2)

Key Scheduler Operators for
the Observable Class (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

88

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operators
• Transforming operators
• Scheduler operators
• These operators provide the

context to run other operators
in designated threads & thread
pools
• e.g., Schedulers.computation()

These operators also work with the Flowable, ParallelFlowable, Single, & Maybe classes

89

Key Scheduler Operators
for the Observable Class

90See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#computation

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

Key Scheduler Operators for the Observable Class
static Scheduler computation()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

91

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for parallel work

Key Scheduler Operators for the Observable Class
static Scheduler computation()

92See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for parallel work
• Optimized for fast Runnable

non-blocking executions

Key Scheduler Operators for the Observable Class

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

93

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers
• Returns a new Scheduler that

is suited for parallel work
• Optimized for fast Runnable

non-blocking executions
• i.e., compute-/CPU-bound

tasks, not I/O-bound tasks!

Key Scheduler Operators for the Observable Class

94

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

Key Scheduler Operators for the Observable Class

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

Arrange to multiply a List of Big
Integer objects in a background

thread in computation thread pool

return Observable
 .fromIterable(bigFractionList)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn
 (Schedulers
 .computation()))

 .reduce(BigFraction::add)

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

95

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

Key Scheduler Operators for the Observable Class

Each BigFraction emitted via from
Callable() is multiplied in parallel

within the computation thread pool

return Observable
 .fromIterable(bigFractionList)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn
 (Schedulers
 .computation()))

 .reduce(BigFraction::add)

96

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

Key Scheduler Operators for the Observable Class

fromCallable() is a “lazy” factory method so
multiply() runs in the computation thread

pool even though subscribeOn() comes after

return Observable
 .fromIterable(bigFractionList)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn
 (Schedulers
 .computation()))

 .reduce(BigFraction::add)

97

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

Key Scheduler Operators for the Observable Class

Only one thread runs reduce() after
all other computations are done

return Observable
 .fromIterable(bigFractionList)

 .flatMap(bf -> Observable
 .fromCallable(() -> bf
 .multiply(sBigFraction))

 .subscribeOn
 (Schedulers
 .computation()))

 .reduce(BigFraction::add)

98

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

• Implemented via “daemon threads”
• i.e., won’t prevent the app from

exiting even if its work isn’t done

Key Scheduler Operators for the Observable Class

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

99

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

• Implemented via “daemon threads”
• The Schedulers.parallel() operator

in Project Reactor is similar
• i.e., intended for compute-/CPU-bound tasks, not I/O-bound tasks

Key Scheduler Operators for the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

100

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

• Implemented via “daemon threads”
• The Schedulers.parallel() operator

in Project Reactor is similar
• The Java common fork-join pool is also similar wrt CPU-bound tasks

Key Scheduler Operators for the Observable Class

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

101See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

• The Schedulers.computation()
operator
• Hosts a fixed-size pool of single-

threaded Executor Service-based
workers

• Used for event-loops, callbacks,
& other computational work

• Implemented via “daemon threads”
• The Schedulers.parallel() operator

in Project Reactor is similar
• The Java common fork-join pool is also similar wrt CPU-bound tasks
• However, ManagedBlocker enables it to also work with I/O-bound tasks

Key Scheduler Operators for the Observable Class

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

102

End of Key Scheduler
Operators for the

Observable Class (Part 2)

Key Combining Operators
in the Observable Class (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

104

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operations
• Transforming operators
• Concurrency & scheduler

operators
• Error handling operators
• Combining operators
• This operator creates a Maybe

by accumulating elements in
an Observable stream
• e.g., reduce()

105

Key Combining Operators
in the Observable Class

106

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

107

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

108

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

This value is initialized
to zero (0) for Integer

109

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

110

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• This process repeats for each pair of values

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

111

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• This process repeats for each pair of values

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

112

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• This process repeats for each pair of values

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

113

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• This process repeats for each pair of values

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

114

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• This process repeats for each pair of values

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

115

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• This param is passed the

intermediate result of the
reduction & the current value
• It returns the next intermediate

value of the reduction
• This process repeats for each pair of values

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

1

3

6

10

0 +

+
+

+

1 2 3 4

116

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• The final result is emitted from

the final call as the sole item
of a Maybe

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

117

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• The final result is emitted from

the final call as the sole item
of a Maybe
• An empty Maybe will be returned

if the Observable emits no items

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

118

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items
• Reduction is performed using a

BiFunction param
• The final result is emitted from

the final call as the sole item
of a Maybe
• An empty Maybe will be returned

if the Observable emits no items
• The internally accumulated value is discarded upon cancellation or error

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

119

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted
return Observable
 .fromArray(bigFractions)
 ...
 .flatMap(bf ->
 multiplyFractions(bf, Schedulers.computation()))
 .reduce(BigFraction::add)
 ...

See Reactive/Observable/ex3/src/main/java/ObserableEx.java

Sum the results of
async multiplications

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

120

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted
• Sources that are infinite & never

complete will never emit anything
through this operator

121

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted
• Sources that are infinite & never

complete will never emit anything
through this operator
• An infinite source may lead to a

fatal OutOfMemoryError

See docs.oracle.com/javase/8/docs/api/java/lang/OutOfMemoryError.html

https://docs.oracle.com/javase/8/docs/api/java/lang/OutOfMemoryError.html

122

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted

• Project Reactor’s Flux.reduce()
operator works the same

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce

return Flux
 .fromArray(bigFractions)
 .flatMap(bf -> multiplyFractions(bf, Schedulers.parallel()))
 .reduce(BigFraction::add)
 ... Sum results of async multiplications

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

123

Key Combining Operators in the Observable Class
• The reduce() operator
• Reduce this Observable’s values

into a single object of the same
type as the emitted items

• Upstream must signal onComplete()
before accumulator can be emitted

• Project Reactor’s Flux.reduce()
operator works the same

• Similar to the Stream.reduce()
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

int result = Stream.of(bigFractions)
 .parallel().map(multiplyFractions)
 .reduce(0, Math::addExact);

Sum the List values

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

124

End of Key Combining
Operators in the Observable

Class (Part 2)

Key Combining Operators
in the Observable Class (Part 3)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

126

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Observables
• Factory method operations
• Transforming operators
• Concurrency & scheduler

operators
• Error handling operators
• Combining operators
• These operators create a Single

by accumulating elements in
an Observable stream
• e.g., reduce(), collectInto(),

& collect()

127

Key Combining Operators
in the Observable Class

128

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T>
collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collectInto

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

129

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure
• The 1st param is the mutable

data structure that accumulates
(collects) the items

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T>
collector)

...
 .collectInto
 (new ArrayList<BigFraction>(),
 List::add)
 ...

130

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure
• The 1st param is the mutable

data structure that accumulates
(collects) the items

• The 2nd param is a BiConsumer
that accepts the accumulator &
an emitted item
• The accumulator is modified

accordingly

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T>
collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiConsumer.html

...
 .collectInto
 (new ArrayList<BigFraction>(),
 List::add)
 ...

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiConsumer.html

131

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure
• The 1st param is the mutable

data structure that accumulates
(collects) the items

• The 2nd param is a BiConsumer
that accepts the accumulator &
an emitted item

• Returns a Single that emits
the mutable data structure

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T>
collector)

132

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure

• This operator is a simplified
version of reduce() that does
not need to return the state
on each pass

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

133

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure

• This operator is a simplified
version of reduce() that does
not need to return the state
on each pass

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

Observable
 .fromIterable(bigFractions)
 .flatMap(...)
 .filter(fraction -> fraction.compareTo(0) > 0)
 .collectInto(new ArrayList<BigFraction>(), List::add)
 ...

Collect filtered BigFractions into a list

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

134

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure

• This operator is a simplified
version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
operator works the same way

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

135

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure

• This operator is a simplified
version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
operator works the same way
• Flux.collectList() is a more concise

(albeit more limited) option

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

136

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the

finite source Observable into a
single mutable data structure

• This operator is a simplified
version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
operator works the same

• Similar to the Stream.collect()
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

List<Integer> evenNumbers = List
 .of(1, 2, 3, 4, 5, 6)
 .stream()
 .filter(x -> x % 2 == 0)
 .toList();

Collect even #’d Integers into a List

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

137

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container

<R, A> Single<U> collect
(Collector<? super T,

A,
R> collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

138

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• The param is the Java Stream

Collector interface defining the
container supplier, accumulator,
& finisher functions

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

<R, A> Single<U> collect
(Collector<? super T,

A,
R> collector)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html?is-external=true

139

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• The param is the Java Stream

Collector interface defining the
container supplier, accumulator,
& finisher functions

• Returns a Single that emits
the container

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

<R, A> Single<U> collect
(Collector<? super T,

A,
R> collector)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

140

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified

version of reduce() that does
not need to return the state
on each pass

Observable
 .generate(emitter)
 .take(sMAX_FRACTIONS)
 .flatMap(...)
 .collect(toList())
 .flatMapCompletable(...);

Collect all the processed
BigFractions into a List

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

141

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified

version of reduce() that does
not need to return the state
on each pass
• It’s also similar to operator

Observable.collectInto()

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collectInto

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

142

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified

version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
operator works the same way

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

143

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified

version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
operator works the same way
• Flux.collectList() is a more concise

(albeit more limited) option

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

144

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified

version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
operator works the same

• Similar to the Stream.collect()
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

Set<Integer> evenNumbers = List
 .of(1, 2, 2, 3, 4, 4, 5, 6, 6)
 .stream()
 .filter(x -> x % 2 == 0)
 .collect(toSet());

Collect even #’d Integers into a Set

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

145

End of Key Combining
Operators in the Observable

Class (Part 3)

