
Evaluate the Limitations of
Java Parallel Streams

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Evaluate the benefits of Java parallel streams
• Evaluate the limitations of Java parallel streams

3

Limitations of Java
Parallel Streams

4

• There are some limitations with Java parallel streams

Limitations of Java Parallel Streams

The Java parallel streams framework is not all unicorns & rainbows!!

5

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model

See dzone.com/articles/whats-wrong-java-8-part-iii

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()

Limitations of Java Parallel Streams

https://dzone.com/articles/whats-wrong-java-8-part-iii

6

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe

See en.wikipedia.org/wiki/Race_condition#Software

Thread1

Thread2

Shared StateRace conditions occur when a program
depends on the sequence or timing
of threads for it to operate properly

Limitations of Java Parallel Streams

https://en.wikipedia.org/wiki/Race_condition

7

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…

See lesson on “Java SearchWithParallelSpliterator Example: trySplit()”

Limitations of Java Parallel Streams

8

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

accumulate() accumulate()
accumulate()

Concurrent
Result Container

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• Concurrent collectors are easier

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

See lesson on “Java Parallel Stream Internals: Non-Concurrent & Concurrent Collectors”

Limitations of Java Parallel Streams

9

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool

See dzone.com/articles/think-twice-using-java-8

Limitations of Java Parallel Streams

https://dzone.com/articles/think-twice-using-java-8

10

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Java completable futures don’t

have this limitation

See dzone.com/articles/think-twice-using-java-8

Limitations of Java Parallel Streams

https://dzone.com/articles/think-twice-using-java-8

11See “The Java Fork-Join Pool: Applying the ManagedBlocker Interface”

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Java completable futures don’t

have this limitation
• It’s important to know how to

apply ManagedBlockers

Limitations of Java Parallel Streams

12

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Streams incur some overhead

Limitations of Java Parallel Streams

13

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 369 msecs
COMPLETABLE_FUTURES_PHASES executed in 388 msecs
PARALLEL_STREAMS executed in 399 msecs
PARALLEL_STREAM_PHASES executed in 417 msecs
PARALLEL_STREAM_INPUTS executed in 423 msecs
COMPLETABLE_FUTURES_INPUT executed in 460 msecs
FORK_JOIN_POOL executed in 466 msecs
SEQUENTIAL_LOOPS executed in 2157 msecs
SEQUENTIAL_STREAM executed in 2523 msecs
Ending SearchStreamGangTest

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead

See blog.jooq.org/2015/12/08/3-reasons-why-you-shouldnt-replace-your-for-loops-by-stream-foreach

Limitations of Java Parallel Streams

https://blog.jooq.org/2015/12/08/3-reasons-why-you-shouldnt-replace-your-for-loops-by-stream-foreach/

14

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead
• Fork-join “blunder”

See coopsoft.com/dl/Blunder.pdf

Limitations of Java Parallel Streams

http://coopsoft.com/dl/Blunder.pdf

15

Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL_STREAM executed in 428 msecs
SEQUENTIAL_STREAM executed in 981 msecs

Printing 4 results for input file 2 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES_1 executed in 83 msecs
PARALLEL_STREAM executed in 102 msecs
SEQUENTIAL_STREAM executed in 251 msecs

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead
• Fork-join “blunder”
• Java completable futures may be more efficient & scalable

Limitations of Java Parallel Streams

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

16Naturally, your mileage may vary..

Limitations of Java Parallel Streams
• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead
• Fork-join “blunder”
• Java completable futures may be more efficient & scalable

17

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share

the common fork-join pool
• Streams incur some overhead
• There’s no substitute for benchmarking!

See java-performance.info/jmh

Limitations of Java Parallel Streams

http://java-performance.info/jmh

18

Wrapping Up Java
Parallel Streams

19

• In general, there's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks
• i.e., completable futures are more efficient

& scalable, but are harder to program

Wrapping Up Java Parallel Streams

Performance

Productivity

20See www.ibm.com/developerworks/library/j-jvmc2

Pros

Cons

Wrapping Up Java Parallel Streams
• In general, however, the pros of Java parallel streams far outweigh the cons

for many use cases!!

http://www.ibm.com/developerworks/library/j-jvmc2

21

• Good coverage of parallel streams appears
in the book “Modern Java in Action”

Wrapping Up Java Parallel Streams

See www.manning.com/books/modern-java-in-action

http://www.manning.com/books/modern-java-in-action

22

End of Evaluate the
Limitations of Java
Parallel Streams

