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Learning Objectives in this Part of the Lesson
• Evaluate the benefits of Java parallel streams
• Evaluate the limitations of Java parallel streams
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Limitations of Java 
Parallel Streams
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• There are some limitations with Java parallel streams
  

Limitations of Java Parallel Streams

The Java parallel streams framework is not all unicorns & rainbows!!
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
  

See dzone.com/articles/whats-wrong-java-8-part-iii
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Limitations of Java Parallel Streams

https://dzone.com/articles/whats-wrong-java-8-part-iii
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
  

See en.wikipedia.org/wiki/Race_condition#Software 
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Shared StateRace conditions occur when a program 
depends on the sequence or timing 
of threads for it to operate properly

Limitations of Java Parallel Streams

https://en.wikipedia.org/wiki/Race_condition
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…

  

See lesson on “Java SearchWithParallelSpliterator Example: trySplit()”

Limitations of Java Parallel Streams
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• Concurrent collectors are easier
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See lesson on “Java Parallel Stream Internals: Non-Concurrent & Concurrent Collectors”

Limitations of Java Parallel Streams
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
  

See dzone.com/articles/think-twice-using-java-8

Limitations of Java Parallel Streams

https://dzone.com/articles/think-twice-using-java-8
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Java completable futures don’t 

have this limitation
  

See dzone.com/articles/think-twice-using-java-8

Limitations of Java Parallel Streams

https://dzone.com/articles/think-twice-using-java-8


11See “The Java Fork-Join Pool: Applying the ManagedBlocker Interface”

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Java completable futures don’t 

have this limitation
• It’s important to know how to

apply ManagedBlockers
  

Limitations of Java Parallel Streams
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Streams incur some overhead

  

Limitations of Java Parallel Streams
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Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 369 msecs
COMPLETABLE_FUTURES_PHASES executed in 388 msecs
PARALLEL_STREAMS executed in 399 msecs
PARALLEL_STREAM_PHASES executed in 417 msecs
PARALLEL_STREAM_INPUTS executed in 423 msecs
COMPLETABLE_FUTURES_INPUT executed in 460 msecs
FORK_JOIN_POOL executed in 466 msecs
SEQUENTIAL_LOOPS executed in 2157 msecs
SEQUENTIAL_STREAM executed in 2523 msecs
Ending SearchStreamGangTest

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead

  

See blog.jooq.org/2015/12/08/3-reasons-why-you-shouldnt-replace-your-for-loops-by-stream-foreach

Limitations of Java Parallel Streams

https://blog.jooq.org/2015/12/08/3-reasons-why-you-shouldnt-replace-your-for-loops-by-stream-foreach/
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead
• Fork-join “blunder”

  
See coopsoft.com/dl/Blunder.pdf 

Limitations of Java Parallel Streams

http://coopsoft.com/dl/Blunder.pdf
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Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL_STREAM executed in 428 msecs
SEQUENTIAL_STREAM executed in 981 msecs

Printing 4 results for input file 2 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES_1 executed in 83 msecs
PARALLEL_STREAM executed in 102 msecs
SEQUENTIAL_STREAM executed in 251 msecs

• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead
• Fork-join “blunder”
• Java completable futures may be more efficient & scalable

  

Limitations of Java Parallel Streams

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang 

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang
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Limitations of Java Parallel Streams
• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Streams incur some overhead, e.g.
• Splitting & combining overhead
• Fork-join “blunder”
• Java completable futures may be more efficient & scalable
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• There are some limitations with Java parallel streams, e.g.
• Some problems can’t be expressed

via the “split-apply-combine” model
• Race conditions may occur if behaviors 

aren’t stateless & thread-safe
• Parallel spliterators may be tricky…
• All parallel streams can only share 

the common fork-join pool
• Streams incur some overhead 
• There’s no substitute for benchmarking!  

See java-performance.info/jmh

Limitations of Java Parallel Streams

http://java-performance.info/jmh


18

Wrapping Up Java 
Parallel Streams
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• In general, there's a tradeoff between computing performance & programmer 
productivity when choosing amongst these frameworks
• i.e., completable futures are more efficient 

& scalable, but are harder to program  

Wrapping Up Java Parallel Streams

Performance

Productivity



20See www.ibm.com/developerworks/library/j-jvmc2

Pros

Cons

Wrapping Up Java Parallel Streams
• In general, however, the pros of Java parallel streams far outweigh the cons 

for many use cases!!
  

http://www.ibm.com/developerworks/library/j-jvmc2
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• Good coverage of parallel streams appears 
in the book “Modern Java in Action”

Wrapping Up Java Parallel Streams

See www.manning.com/books/modern-java-in-action

http://www.manning.com/books/modern-java-in-action
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End of Evaluate the 
Limitations of Java 
Parallel Streams


