Evaluate the Limitations of
Java Parallel Streams

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Evaluate the limitations of Java parallel streams

Limitations of Java
Parallel Streams

Limitations of Java Parallel Streams

« There are some limitations with Java parallel streams

The Java parallel streams framework is not all unicorns & rainbows!!

Limitations of Java Parallel Streams

« There are some limitations with Java parallel streams, e.g.

« Some problems can’t be expressed
via the “split-apply-combine” model

trySplit()

DataSource; ;

Process
guentially

Process
sequentially

See dzone.com/articles/whats-wrong-java-8-part-iii

https://dzone.com/articles/whats-wrong-java-8-part-iii

Limitations of Java Parallel Streams

* There are some limitations with Java parallel streams, e.q.

Thread,

« Race conditions may occur if behaviors -2
aren’t stateless & thread-safe Thread,

.- Shared State
Race conditions occur when a program

depends on the sequence or timing
of threads for it to operate properly

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition

Limitations of Java Parallel Streams

* There are some limitations with Java parallel streams, e.q.

« Parallel spliterators may be tricky...

See lesson on “Java SearchWithParallelSpliterator Example: trySplit()’

Limitations of Java Parallel Streams

* There are some limitations with Java parallel streams, e.q.

InputSource
trySplit()
InputSource; InputSource,
trySplit() trySplit()
. . InputSource; 1 InputSource; | [InputSource, | [InputSource;
- Parallel spliterators may be tricky... = I I I
. Process Process Process Process
« Concurrent collectors are easier sequentially sequentially sequentially sequentially

L

k accumulate())
accumulate() accumulate()
Concurrent
Result Container

_

See lesson on “Java Parallel Stream Internals: Non-Concurrent & Concurrent Collectors”

Limitations of Java Parallel Streams
« There are some limitations with Java parallel streams, e.g.

« All parallel streams can only share
the common fork-join pool

See dzone.com/articles/think-twice-using-java-8

https://dzone.com/articles/think-twice-using-java-8

Limitations of Java Parallel Streams
« There are some limitations with Java parallel streams, e.g.

T

« All parallel streams can only share
the common fork-join pool

« Java completable futures don't
have this limitation

See dzone.com/articles/think-twice-using-java-8

https://dzone.com/articles/think-twice-using-java-8

Limitations of Java Parallel Streams
* There are some limitations with Java parallel streams, e.q.

« All parallel streams can only share
the common fork-join pool

o It's important to know how to
apply ManagedBlockers

See “ The Java Fork-Join Pool: Applying the ManagedBlocker Interface’

Limitations of Java Parallel Streams

* There are some limitations with Java parallel streams, e.q.

« Streams incur some overhead

12

Limitations of Java Parallel Streams
* There are some limitations with Java parallel streams, e.g.

Starting SearchStreamGangTest

PARALLEL_SPLITERATOR executed in 369 msecs
COMPLETABLE_FUTURES_PHASES executed in 388 msecs
PARALLEL_STREAMS executed in 399 msecs
PARALLEL_STREAM_PHASES executed in 417 msecs
PARALLEL_STREAM_INPUTS executed in 423 msecs
COMPLETABLE FUTURES INPUT executed in 460 msecs

SEQUENTIAL LOOPS executed in 2157 msecs
SEQUENTIAL STREAM executed in 2523 msecs

 Streams incur some overhead, e.q.
 Splitting & combining overhead

See blog.jooq.org/2015/12/08/3-reasons-why-you-shouldnt-replace-your-for-loops-by-stream-foreach

https://blog.jooq.org/2015/12/08/3-reasons-why-you-shouldnt-replace-your-for-loops-by-stream-foreach/

Limitations of Java Parallel Streams

* There are some limitations with Java parallel streams, e.q.

A Java Fork/Join Blunder

Ed Harned
eh at coopsoft dot com

The F/J framework is a faulty enterprise from the beginning. The basic design is Divide-and
Conquer using dyadic recursive decomposition. Simply put, the framework supports tasks that
decompose or fork into two tasks, that decompose into two tasks, that decompose... When the
decomposing or forking stops, the bottom tasks return a result up the chain. The forking tasks
retrieve the results of the forked tasks with an intermediate juin()‘. Hence, Fork/Join. This is a
beautiful design in theory. In the reality of JavaSE it doesn’t work well.

It doesn’t work well because it is the wrong tool for the job. The F/J framework is the underlying
software experiment for the 2000 research paper, “A Java Fork/Join Framework.”” That
experimental software is not, has never been, and will never be the foundation for a general-
purpose application framework. Using such a tool for application development is like using a
pocketknife to chisel a granite sculpture. There is just so, so much wrong with the F/J framework
as a general-purpose, commercial application development tool that the author wrote two
articles’, with seventeen (17) points, to illustrate the calamity. This paper is a consolidation of
those articles explaining why the F/J framework is the wrong tool for the job.

There are four major faults with the F/J framework:

. The use of Deques/Submission queues

. The use of an intermediate join()

. The use of academic research standards instead of application development standards
. The use of the CountedCompleter class

F N

1. The use of Deq i

H The first design fault with the F/J framework is the use of Deques/Submission queues.
L] rea I I lS I n C u r SO I I Ie Ove r ea e Deques/Submission-Queues are a feature primarily for
’ u u 1. Applications that run on clusters of computers (Cilk for one.)

2. Operating systems that balance the load between CPU’s.
3. A number of other environments irrelevant to this discussion.

‘While deques are efficient in limiting contention (there are many academic research

papers on work-stealing and deques), there is no hint of how new processes (tasks)
actually get into the deques.

T/ A\ n
. Fork-Jom blunder” (5 5
! An intermediate join() waits for the fork() to complete and should not be confused with a Thread.join() where the
later waits for another Thread to finish.
2 hitp://gee.cs.oswego. fj.pdf
— y c

com/ar/CalamityArticle.html
com/ar/Calamity2 Article.html

See coopsoft.com/dl/Blunder.pdf

http://coopsoft.com/dl/Blunder.pdf

Limitations of Java Parallel Streams
* There are some limitations with Java parallel streams, e.q.

COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL STREAM executed in 428 msecs

COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES _1 executed in 83 msecs
PARALLEL STREAM executed in 102 msecs

REAV executed

 Streams incur some overhead, e.q.

« Java completable futures may be more efficient & scalable

See github.com/douglascraigschmidt/Livel essons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Limitations of Java Parallel Streams
* There are some limitations with Java parallel streams, e.q.

EPA Fuel Economy Estimates

These estimates reflect new EPA methods beginning with 2008 models

CITY MPG HIGHWAY MPG
1 8 Estimated 2 5
Annual Fuel Cost
$2,039
E o oo f’d i based on 15,000 miles onx,pr:?:tdd:\iE:

at $2.80 per gallon

15(21 MPG

21 to 29 MPG

c bined Fuel E

Your actual

This Vehicle . ¢
mileage will vary

21 depending on how you
\ 4 drive and maintain
10 31 ur vehicl
All SUVs

 Streams incur some overhead, e.q.

« Java completable futures may be more efficient & scalable

Naturally, your mileage may vary..

Limitations of Java Parallel Streams

« There are some limitations with Java parallel streams, e.g.

« There’s no substitute for benchmarking!

algorithms array avoiding worst

practices BigDecimal binary serialization
pitset book review boxing byte buffer

collections CPU
optimization data

compression datatype

optimization date dateformat double
exceptions FastUtil FIX hashcode hashmap

hdd hppc io Java 7 |ava & java dates jdk
8 JMH INI Koloboke map memory layout

memory
O Dti m izati O n multithreading

parsing primitive collections profiler ssd

Stl’l N g string concatenation string pool
sun.misc.Unsafe tols trove

See java-performance.info/jmh

http://java-performance.info/jmh

Wrapping Up Java
Parallel Streams

18

Wrapping Up Java Parallel Streams

« In general, there's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks

* i.e., completable futures are more efficient
& scalable, but are harder to program

Productivity

Performance

19

Wrapping Up Java Parallel Streams

« In general, however, the pros of Java parallel streams far outweigh the cons
for many use cases!!

See www.ibm.com/developerworks/library/j-jvmc2

http://www.ibm.com/developerworks/library/j-jvmc2

Wrapping Up Java Parallel Streams

« Good coverage of parallel streams appears
in the book “"Modern Java in Action”

das, streams, functional and reactive programming

Raoul-Gabriel Urma
Mario Fusco
Alan Mycroft

/II MANNING

See www.manning.com/books/modern-java-in-action

http://www.manning.com/books/modern-java-in-action

End of Evaluate the
Limitations of Java
Parallel Streams

22

