
Evaluate the Benefits of
Java Parallel Streams

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Evaluate the benefits of Java parallel streams

3

Benefits of Java
Parallel Streams

4

• The Java streams framework simplifies
parallel programming by shielding
developers from details of splitting,
applying, & combining results

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

Benefits of Java Parallel Streams

5

• Parallel stream implementations are often
(much) faster & more scalable than sequential
(stream & loops) implementations
 45,000+ phrases

Search Phrases

Input Strings to Search

…

Benefits of Java Parallel Streams

Tests conducted on a 3.2GHz 10-core MacBook Pro with 64 Gbytes of RAM

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 369 msecs
COMPLETABLE_FUTURES_PHASES executed in 388 msecs
PARALLEL_STREAMS executed in 399 msecs
PARALLEL_STREAM_PHASES executed in 417 msecs
PARALLEL_STREAM_INPUTS executed in 423 msecs
COMPLETABLE_FUTURES_INPUT executed in 460 msecs
FORK_JOIN_POOL executed in 466 msecs
SEQUENTIAL_LOOPS executed in 2157 msecs
SEQUENTIAL_STREAM executed in 2523 msecs
Ending SearchStreamGangTest

6

• The performance speedup is a largely a
function of the partitioning strategy for
the input (N), the amount of work
performed (Q), & the # of cores

The NQ model
• N is the # of data elements

to process per thread
• Q quantifies how CPU-

intensive the processing is

N
hilo

lo

hi

Q

Ideal

Benefits of Java Parallel Streams

7Alleviates many accidental & inherent complexities of concurrency/parallelism

• Apps often don’t need explicit synchronization or threading

Benefits of Java Parallel Streams

8

• Apps often don’t need explicit synchronization or threading
• Stateless behaviors alleviate the

need to access shared mutable state

See en.wikipedia.org/wiki/Pure_function

return mList.size() == 0;

return new SearchResults
 (Thread.currentThread().getId(),
 currentCycle(), phrase, title,
 StreamSupport
 .stream(new PhraseMatchSpliterator
 (input, phrase),
 parallel)
 .collect(toList()));

toList()

45,000+ phrases

Search Phrases

parallelStream()

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

Benefits of Java Parallel Streams

https://en.wikipedia.org/wiki/Pure_function

9See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

• Apps often don’t need explicit synchronization or threading
• Stateless behaviors alleviate the

need to access shared mutable state
• The Java class library can be used

to handle locking needed to protect
shared mutable state

Benefits of Java Parallel Streams

https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

10

• Streams ensures that the structure of sequential & parallel code is the same

List<List<SearchResults>>
 processStream() {
 return getInput()
 .stream()
 .map(this::processInput)
 .toList();
}

List<List<SearchResults>>
 processStream() {
 return getInput()
 .parallelStream()
 .map(this::processInput)
 .toList();
}

Converting sequential to parallel streams only require minuscule changes!

Benefits of Java Parallel Streams

11

• Streams ensures that the structure of sequential & parallel code is the same
 List<SearchResults> results =
 mPhrasesToFind
 .parallelStream()
 .map(phase ->
 searchForPhrase(...,
 false))
 .filter(not(SearchResults
 ::isEmpty))
 .toList();

List<SearchResults> results =
 mPhrasesToFind
 .parallelStream()
 .map(phase ->
 searchForPhrase(...,
 true))
 .filter(not(SearchResults
 ::isEmpty))
 .toList();

Converting sequential to parallel streams only require minuscule changes!

Benefits of Java Parallel Streams

12

• Examples show synergies between functional & object-oriented programming
Benefits of Java Parallel Streams

Modern
Java

Modern Java is a “hybrid” that combines both
object-oriented & functional language features

e.g., C++,
C#, Classic

Java

e.g., C,
FORTRAN

e.g., ML,
Haskell,
Modern

Java

e.g., Prolog

See imdanielsp.medium.com/hybrid-programming-languages-you-are-probably-using-one-77011e12363a

https://imdanielsp.medium.com/hybrid-programming-languages-you-are-probably-using-one-77011e12363a

13

• Object-oriented design & programming
features simplify understandability,
reusability, & extensibility

Object-oriented techniques emphasize systematic reuse of structure

Benefits of Java Parallel Streams

14

• Implementing object-oriented hook
methods with functional programming
features helps to close gap between
domain intent & computations

getInput()
 .parallelStream()
 .map(this::processInput)
 .toList();

return mPhrasesToFind
 .parallelStream()
 .map(phrase -> searchForPhrase(phrase, input, title, false))
 .filter(not(SearchResults::isEmpty)
 .toList();

Benefits of Java Parallel Streams

15

End of Evaluate the Benefits
of Java Parallel Streams

