
Java Parallel Streams Internals:
Demo’ing Collector Performance

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel

stream common fork-join pool
• Perform a reduction to combine partial results into a single result
• Recognize key behaviors & differences of non-concurrent & concurrent

collectors
• Be aware of non-concurrent & concurrent collector APIs
• Grok performance variance between concurrent & non-concurrent collectors

Learning Objectives in this Part of the Lesson

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

Starting collector tests for 1000 words..printing results
 21 msecs: sequential timeStreamCollectToSet()
 30 msecs: parallel timeStreamCollectToSet()
 39 msecs: sequential timeStreamCollectToConcurrentSet()
 59 msecs: parallel timeStreamCollectToConcurrentSet()
...
Starting collector tests for 100000 words..printing results
 219 msecs: parallel timeStreamCollectToConcurrentSet()
 364 msecs: parallel timeStreamCollectToSet()
 657 msecs: sequential timeStreamCollectToSet()
 804 msecs: sequential timeStreamCollectToConcurrentSet()
Starting collector tests for 883311 words..printing results
 1782 msecs: parallel timeStreamCollectToConcurrentSet()
 3010 msecs: parallel timeStreamCollectToSet()
 6169 msecs: sequential timeStreamCollectToSet()
 7652 msecs: sequential timeStreamCollectToConcurrentSet()

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

3

Demonstrating Collector
Performance

4

• Concurrent & non-concurrent collectors perform differently when used in
parallel & sequential streams on different input sizes

See prior lessons on “Java Parallel Streams Internals: Non-Concurrent and Concurrent Collectors”

Demonstrating Collector Performance

5

join join
join

• A non-concurrent collector operates by merging sub-results

Demonstrating Collector Performance

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Different threads operate on
different instances of the

intermediate result containers

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toSet

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

Demonstrating Collector Performance

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

accumulate() accumulate()accumulate()

Concurrent
Result Container

accumulate()

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

7

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

Demonstrating Collector Performance

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

accumulate() accumulate()accumulate()

Concurrent
Result Container

accumulate()
Thus there’s no need to merge
any intermediate sub-results!

8

• The ex36 example showcases the different in performance of two collectors

Demonstrating Collector Performance

9

• The ex36 example showcases the different in performance of two collectors
• Various Set collectors defined by the Java Collectors utility class

Demonstrating Collector Performance

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

10

• The ex36 example showcases the different in performance of two collectors
• Various Set collectors defined by the Java Collectors utility class
• The ConcurrentSetCollector

Demonstrating Collector Performance

See Java8/ex36/src/main/java/utils/ConcurrentSetCollector.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex36/src/main/java/utils/ConcurrentSetCollector.java

11

• The ex36 example showcases the different in performance of two collectors
• Various Set collectors defined by the Java Collectors utility class
• The ConcurrentSetCollector
• Applied in conjunction with

ConcurrentHashMap.
KeySetView

Demonstrating Collector Performance

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

12

• Results show collector differences become more significant as input grows

Demonstrating Collector Performance

Starting collector tests for 1000 words..printing results
 21 msecs: sequential timeStreamCollectToSet()
 30 msecs: parallel timeStreamCollectToSet()
 39 msecs: sequential timeStreamCollectToConcurrentSet()
 59 msecs: parallel timeStreamCollectToConcurrentSet()
...
Starting collector tests for 100000 words....printing results
 219 msecs: parallel timeStreamCollectToConcurrentSet()
 364 msecs: parallel timeStreamCollectToSet()
 657 msecs: sequential timeStreamCollectToSet()
 804 msecs: sequential timeStreamCollectToConcurrentSet()
Starting collector tests for 883311 words....printing results
 1782 msecs: parallel timeStreamCollectToConcurrentSet()
 3010 msecs: parallel timeStreamCollectToSet()
 6169 msecs: sequential timeStreamCollectToSet()
 7652 msecs: sequential timeStreamCollectToConcurrentSet()

See upcoming lessons on “When [Not] to Use Parallel Streams”

13See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

Demonstrating Collector Performance

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

14

End of Java Parallel Streams
Internals: Demo’ing

Collector Performance

