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• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel 

stream common fork-join pool
• Perform a reduction to combine partial results into a single result
• Recognize key behaviors & differences of non-concurrent & concurrent 

collectors
• Be aware of non-concurrent & concurrent collector APIs
• Grok performance variance between concurrent & non-concurrent collectors

Learning Objectives in this Part of the Lesson

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

Starting collector tests for 1000 words..printing results
    21 msecs: sequential timeStreamCollectToSet()
    30 msecs: parallel timeStreamCollectToSet()
    39 msecs: sequential timeStreamCollectToConcurrentSet()
    59 msecs: parallel timeStreamCollectToConcurrentSet()
...
Starting collector tests for 100000 words..printing results
   219 msecs: parallel timeStreamCollectToConcurrentSet()
   364 msecs: parallel timeStreamCollectToSet()
   657 msecs: sequential timeStreamCollectToSet()
   804 msecs: sequential timeStreamCollectToConcurrentSet()
Starting collector tests for 883311 words..printing results
  1782 msecs: parallel timeStreamCollectToConcurrentSet()
  3010 msecs: parallel timeStreamCollectToSet()
  6169 msecs: sequential timeStreamCollectToSet()
  7652 msecs: sequential timeStreamCollectToConcurrentSet()

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36
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Demonstrating Collector 
Performance
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• Concurrent & non-concurrent collectors perform differently when used in 
parallel & sequential streams on different input sizes

  

See prior lessons on “Java Parallel Streams Internals: Non-Concurrent and Concurrent Collectors”

Demonstrating Collector Performance
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join join
join

• A non-concurrent collector operates by merging sub-results

  

Demonstrating Collector Performance
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Different threads operate on 
different instances of the 

intermediate result containers

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toSet 

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html


6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html 

• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream

  

Demonstrating Collector Performance
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https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html
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• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream

  

Demonstrating Collector Performance
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Thus there’s no need to merge 
any intermediate sub-results!
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• The ex36 example showcases the different in performance of two collectors 

  

Demonstrating Collector Performance
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• The ex36 example showcases the different in performance of two collectors
• Various Set collectors defined by the Java Collectors utility class 

  

Demonstrating Collector Performance

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
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• The ex36 example showcases the different in performance of two collectors
• Various Set collectors defined by the Java Collectors utility class
• The ConcurrentSetCollector

  

Demonstrating Collector Performance

See Java8/ex36/src/main/java/utils/ConcurrentSetCollector.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex36/src/main/java/utils/ConcurrentSetCollector.java
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• The ex36 example showcases the different in performance of two collectors
• Various Set collectors defined by the Java Collectors utility class
• The ConcurrentSetCollector
• Applied in conjunction with

ConcurrentHashMap.
KeySetView

  

Demonstrating Collector Performance

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html 

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html
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• Results show collector differences become more significant as input grows
  

Demonstrating Collector Performance

Starting collector tests for 1000 words..printing results
    21 msecs: sequential timeStreamCollectToSet()
    30 msecs: parallel timeStreamCollectToSet()
    39 msecs: sequential timeStreamCollectToConcurrentSet()
    59 msecs: parallel timeStreamCollectToConcurrentSet() 
...
Starting collector tests for 100000 words....printing results
   219 msecs: parallel timeStreamCollectToConcurrentSet()
   364 msecs: parallel timeStreamCollectToSet()
   657 msecs: sequential timeStreamCollectToSet()
   804 msecs: sequential timeStreamCollectToConcurrentSet()
Starting collector tests for 883311 words....printing results
  1782 msecs: parallel timeStreamCollectToConcurrentSet()
  3010 msecs: parallel timeStreamCollectToSet()
  6169 msecs: sequential timeStreamCollectToSet()
  7652 msecs: sequential timeStreamCollectToConcurrentSet()

See upcoming lessons on “When [Not] to Use Parallel Streams”



13See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

Demonstrating Collector Performance

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36
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End of Java Parallel Streams 
Internals: Demo’ing 

Collector Performance


