
Java Parallel Streams Internals: Non-
Concurrent & Concurrent Collectors (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

accumulate()
accumulate()

Concurrent
Result Container

accumulate()

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel

stream common fork-join pool
• Perform a reduction to combine

partial results into a single result
• Recognize key behaviors & differences of

non-concurrent & concurrent collectors

3

Overview of Concurrent &
Non-Concurrent Collectors

4

• Collector defines an interface
whose implementations can
accumulate input elements
in a mutable result container

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Concurrent & Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

5

• Collector implementations can either be
concurrent or non-concurrent based
on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Concurrent & Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

6

• Collector implementations can either be
concurrent or non-concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams

See “Java Streams: Introducing Non-Concurrent Collectors”

filter(not(this::urlCached))

toList()

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Concurrent & Non-Concurrent Collectors

7

• Collector implementations can either be
concurrent or non-concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams
• A non-concurrent collector can be

used for either a sequential stream
or a parallel stream!

We just focus on parallel streams in this lesson

Overview of Concurrent & Non-Concurrent Collectors

8

Structure & Functionality of
Non-Concurrent Collectors

9

• A non-concurrent collector operates by merging sub-results

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Structure & Functionality of Non-Concurrent Collectors

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

10

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Structure & Functionality of Non-Concurrent Collectors

11

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Structure & Functionality of Non-Concurrent Collectors

12

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into an intermediate mutable
result container
• e.g., List, Set, Map, etc.

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Structure & Functionality of Non-Concurrent Collectors

13

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into an intermediate mutable
result container
• e.g., List, Set, Map, etc.

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Different threads operate on different instances of intermediate result containers

Structure & Functionality of Non-Concurrent Collectors

14

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into an intermediate mutable
result container

• Sub-results are merged into one
mutable result container

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Structure & Functionality of Non-Concurrent Collectors

15

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into an intermediate mutable
result container

• Sub-results are merged into one
mutable result container
• Only one thread in the fork-join

pool is used to merge any pair of
intermediate sub-results

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Structure & Functionality of Non-Concurrent Collectors

16

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into an intermediate mutable
result container

• Sub-results are merged into one
mutable result container
• Only one thread in the fork-join

pool is used to merge any pair of
intermediate sub-results

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Thus there’s no need for any synchronizers in a non-concurrent collector

Structure & Functionality of Non-Concurrent Collectors

17

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into an intermediate mutable
result container

• Sub-results are merged into one
mutable result container

join join
joinThis process is safe & order-preserving,

but costly for containers like maps & sets

Structure & Functionality of Non-Concurrent Collectors

18

Structure & Functionality
of Concurrent Collectors

19

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Structure & Functionality of Concurrent Collectors

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

20

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream
• As usual, the input is partitioned

into chunks
InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Structure & Functionality of Concurrent Collectors

21

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

accumulate() accumulate()
accumulate()

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream
• As usual, the input is partitioned

into chunks
• Each chunk runs in parallel in

the common fork-join pool
InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Concurrent
Result Container

Structure & Functionality of Concurrent Collectors

22

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

accumulate() accumulate()
accumulate()

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream
• As usual, the input is partitioned

into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into one mutable result container
• e.g., a concurrent collection

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Concurrent
Result Container

Structure & Functionality of Concurrent Collectors

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

23

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

accumulate() accumulate()
accumulate()

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream
• As usual, the input is partitioned

into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into one mutable result container
• e.g., a concurrent collection

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Concurrent
Result Container

Different threads in a parallel stream
share one concurrent result container

Structure & Functionality of Concurrent Collectors

24

• A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream
• As usual, the input is partitioned

into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected

into one mutable result container

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2
trySplit()

InputSource

trySplit() trySplit()

Of course, encounter order is not preserved & synchronization is required..

Thus there’s no need to merge
any intermediate sub-results!

Structure & Functionality of Concurrent Collectors

25

• A concurrent collector may out-perform a
non-concurrent collector if merging costs
are higher than synchronization costs

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

Structure & Functionality of Concurrent Collectors

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

26

• A concurrent collector may out-perform a
non-concurrent collector if merging costs
are higher than synchronization costs
• Highly optimized result containers like

ConcurrentHashMap may be more
efficient than merging HashMaps

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Structure & Functionality of Concurrent Collectors
HashMap

ConcurrentHashMap

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

Bin
Locks

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

27See www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

• A concurrent collector may out-perform a
non-concurrent collector if merging costs
are higher than synchronization costs
• Highly optimized result containers like

ConcurrentHashMap may be more
efficient than merging HashMaps

• ConcurrentHashMap is also more
efficient than a SynchronizedMap

Structure & Functionality of Concurrent Collectors
SynchronizedMap

ConcurrentHashMap

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

Bin
Locks

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

Contention is low due to use of multiple locks

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

28See www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

• A concurrent collector may out-perform a
non-concurrent collector if merging costs
are higher than synchronization costs
• Highly optimized result containers like

ConcurrentHashMap may be more
efficient than merging HashMaps

• ConcurrentHashMap is also more
efficient than a SynchronizedMap

Structure & Functionality of Concurrent Collectors
SynchronizedMap

ConcurrentHashMap

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

Segment
Locks

…
0 1 2 n

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

In contrast, SynchronizedMap uses just one lock

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

29

End of Java Parallel Streams
Internals: Non-Concurrent &
Concurrent Collectors (Part 1)

