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Learning Objectives in this Part of the Lesson
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• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel 

stream common fork-join pool
• Perform a reduction to combine

partial results into a single result
• Recognize key behaviors & differences of

non-concurrent & concurrent collectors



3

Overview of Concurrent & 
Non-Concurrent Collectors
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• Collector defines an interface 
whose implementations can 
accumulate input elements 
in a mutable result container

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Concurrent & Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html
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• Collector implementations can either be
concurrent or non-concurrent based 
on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Concurrent & Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html
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• Collector implementations can either be
concurrent or non-concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams

See “Java Streams: Introducing Non-Concurrent Collectors”
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Overview of Concurrent & Non-Concurrent Collectors
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• Collector implementations can either be
concurrent or non-concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams
• A non-concurrent collector can be

used for either a sequential stream
or a parallel stream!

We just focus on parallel streams in this lesson

Overview of Concurrent & Non-Concurrent Collectors
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Structure & Functionality of 
Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Structure & Functionality of Non-Concurrent Collectors

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
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Structure & Functionality of Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
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Structure & Functionality of Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into an intermediate mutable 
result container 
• e.g., List, Set, Map, etc.
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Structure & Functionality of Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into an intermediate mutable 
result container 
• e.g., List, Set, Map, etc.
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Different threads operate on different instances of intermediate result containers

Structure & Functionality of Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into an intermediate mutable 
result container 

• Sub-results are merged into one 
mutable result container
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Structure & Functionality of Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into an intermediate mutable 
result container 

• Sub-results are merged into one 
mutable result container
• Only one thread in the fork-join 

pool is used to merge any pair of 
intermediate sub-results
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Structure & Functionality of Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into an intermediate mutable 
result container 

• Sub-results are merged into one 
mutable result container
• Only one thread in the fork-join 

pool is used to merge any pair of 
intermediate sub-results
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Thus there’s no need for any synchronizers in a non-concurrent collector  

Structure & Functionality of Non-Concurrent Collectors
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• A non-concurrent collector operates by merging sub-results
• The input is partitioned into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into an intermediate mutable 
result container 

• Sub-results are merged into one 
mutable result container

join join
joinThis process is safe & order-preserving, 

but costly for containers like maps & sets

Structure & Functionality of Non-Concurrent Collectors
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Structure & Functionality 
of Concurrent Collectors



19

• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Structure & Functionality of Concurrent Collectors

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety
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• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream
• As usual, the input is partitioned 

into chunks
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Structure & Functionality of Concurrent Collectors
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• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream
• As usual, the input is partitioned 

into chunks
• Each chunk runs in parallel in

the common fork-join pool
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Structure & Functionality of Concurrent Collectors
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• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream
• As usual, the input is partitioned 

into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into one mutable result container 
• e.g., a concurrent collection
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Structure & Functionality of Concurrent Collectors

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html
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• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream
• As usual, the input is partitioned 

into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into one mutable result container 
• e.g., a concurrent collection
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Different threads in a parallel stream 
share one concurrent result container

Structure & Functionality of Concurrent Collectors
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• A concurrent collector creates one concurrent mutable result container & 
accumulates elements into it from multiple 
threads in a parallel stream
• As usual, the input is partitioned 

into chunks
• Each chunk runs in parallel in

the common fork-join pool
• Chunk sub-results are collected 

into one mutable result container 
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join
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Of course, encounter order is not preserved & synchronization is required..

Thus there’s no need to merge 
any intermediate sub-results!

Structure & Functionality of Concurrent Collectors
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• A concurrent collector may out-perform a 
non-concurrent collector if merging costs 
are higher than synchronization costs

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36

Structure & Functionality of Concurrent Collectors

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex36
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• A concurrent collector may out-perform a 
non-concurrent collector if merging costs 
are higher than synchronization costs
• Highly optimized result containers like 

ConcurrentHashMap may be more 
efficient than merging HashMaps

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap 

Structure & Functionality of Concurrent Collectors
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https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap


27See www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

• A concurrent collector may out-perform a 
non-concurrent collector if merging costs 
are higher than synchronization costs
• Highly optimized result containers like 

ConcurrentHashMap may be more 
efficient than merging HashMaps

• ConcurrentHashMap is also more
efficient than a SynchronizedMap

Structure & Functionality of Concurrent Collectors
SynchronizedMap
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Contention is low due to use of multiple locks

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java


28See www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

• A concurrent collector may out-perform a 
non-concurrent collector if merging costs 
are higher than synchronization costs
• Highly optimized result containers like 

ConcurrentHashMap may be more 
efficient than merging HashMaps

• ConcurrentHashMap is also more
efficient than a SynchronizedMap

Structure & Functionality of Concurrent Collectors
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In contrast, SynchronizedMap uses just one lock

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java
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End of Java Parallel Streams 
Internals: Non-Concurrent & 
Concurrent Collectors (Part 1)


