
Java Parallel Streams Internals:
Combining Results (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel

stream common fork-join pool
• Perform a reduction to combine

partial results into a single result
• Be aware of common traps &

pitfalls with parallel streams &
reduce()

Learning Objectives in this Part of the Lesson

3

Differences for collect() &
reduce() in a Parallel Stream

4

• It’s important to understand the
semantic differences between
collect() & reduce()

Differences for collect() & reduce() in a Parallel Stream

5

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3a
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new StringBuilder(),
 StringBuilder::append,
 StringBuilder::append)
 .toString();

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex48

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex48

6

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3a
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new StringBuilder(),
 StringBuilder::append,
 StringBuilder::append)
 .toString();

Convert a list of words
into a stream of words

Naturally, this call doesn’t really do any work since streams are “lazy”

7

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3a
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new StringBuilder(),
 StringBuilder::append,
 StringBuilder::append)
 .toString();

A stream can be dynamically
switched to “parallel” mode!

See docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel

https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html

8

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3a
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new StringBuilder(),
 StringBuilder::append,
 StringBuilder::append)
 .toString();

See mail.openjdk.java.net/pipermail/lambda-libs-spec-experts/2013-March/001504.html

The “last” call to .parallel() or
.sequential() in a stream “wins”

http://mail.openjdk.java.net/pipermail/lambda-libs-spec-experts/2013-March/001504.html

9

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3a
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new StringBuilder(),
 StringBuilder::append,
 StringBuilder::append)
 .toString();

This code works when parallel is
false since the StringBuilder is
only called in a single thread

See docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html

https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html

10

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3a
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new StringBuilder(),
 StringBuilder::append,
 StringBuilder::append)
 .toString();

This code fails when parallel is
true since reduce() expects to
do an “immutable” reduction

See blog.solidsoft.pl/2020/03/12/mysteriously-broken-reduction-operation-on-parallel-streams-in-java-explained

https://blog.solidsoft.pl/2020/03/12/mysteriously-broken-reduction-operation-on-parallel-streams-in-java-explained

11

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3a
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new StringBuilder(),
 StringBuilder::append,
 StringBuilder::append)
 .toString();

There’s a race condition here since
StringBuilder is not thread-safe..

See www.baeldung.com/java-string-builder-string-buffer

http://www.baeldung.com/java-string-builder-string-buffer

12

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions
• One solution use reduce() with

string concatenation

Differences for collect() & reduce() in a Parallel Stream
void streamReduceConcat
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new String(),
 (x, y) -> x + y);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex48

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex48

13

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions
• One solution use reduce() with

string concatenation

Differences for collect() & reduce() in a Parallel Stream
void streamReduceConcat
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .reduce(new String(),
 (x, y) -> x + y);This simple fix is inefficient due

to string concatenation overhead

See javarevisited.blogspot.com/2015/01/3-examples-to-concatenate-string-in-java.html

https://javarevisited.blogspot.com/2015/01/3-examples-to-concatenate-string-in-java.html

14

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions
• One solution use reduce() with

string concatenation
• Another solution uses collect()

with the joining collector

Differences for collect() & reduce() in a Parallel Stream
void streamCollectJoining
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .collect(joining());

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

15

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions
• One solution use reduce() with

string concatenation
• Another solution uses collect()

with the joining collector

Differences for collect() & reduce() in a Parallel Stream
void streamCollectJoining
 (List<String> allStrings,
 boolean parallel) {
 ...
 Stream<String> stringStream =
 allStrings.stream();

 if (parallel)
 stringStream.parallel();

 String words = stringStream
 .collect(joining());

This is a much better solution!!

See www.mkyong.com/java8/java-8-stringjoiner-example

http://www.mkyong.com/java8/java-8-stringjoiner-example

16

• Also beware of issues related
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {
 long difference = LongStream
 .rangeClosed(1, 100)
 .parallel()
 .reduce(0L,
 (x, y) -> x - y);
}

void testSum(long identity, ...) {
 long sum = LongStream
 .rangeClosed(1, 100)
 .reduce(identity,
 // Could use (x, y) -> x + y
 Math::addExact);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

17

• Also beware of issues related
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {
 long difference = LongStream
 .rangeClosed(1, 100)
 .parallel()
 .reduce(0L,
 (x, y) -> x - y);
}

void testSum(long identity, ...) {
 long sum = LongStream
 .rangeClosed(1, 100)
 .reduce(identity,
 // Could use (x, y) -> x + y
 Math::addExact);

This code fails for a parallel stream
since subtraction is not associative

See developer.ibm.com/articles/j-java-streams-2-brian-goetz

https://developer.ibm.com/articles/j-java-streams-2-brian-goetz

18

• Also beware of issues related
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {
 long difference = LongStream
 .rangeClosed(1, 100)
 .parallel()
 .reduce(0L,
 (x, y) -> x - y);
}

void testSum(long identity, ...) {
 long sum = LongStream
 .rangeClosed(1, 100)
 .reduce(identity,
 // Could use (x, y) -> x + y
 Math::addExact);

This code fails if identity is not 0L

The “identity” of an OP is defined as “identity OP value == value” (& inverse)

19

• Also beware of issues related
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {
 long difference = LongStream
 .rangeClosed(1, 100)
 .parallel()
 .reduce(0L,
 (x, y) -> x - y);
}

void testProd(long identity, ...) {
 long sum = LongStream
 .rangeClosed(1, 100)
 .reduce(identity,
 (x, y) -> x * y);This code fails if identity is not 1L

20

• More good discussions about
reduce() vs. collect() appear
online

Differences for collect() & reduce() in a Parallel Stream

See www.youtube.com/watch?v=oWlWEKNM5Aw

http://www.youtube.com/watch?v=oWlWEKNM5Aw

21

End of Java Parallel Streams
Internals: Combining Results

(Part 2)

