
Java Parallel Streams Internals:
Mapping Onto the Common Fork-Join Pool

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Know how parallel streams map onto

the common fork-join pool framework

Learning Objectives in this Part of the Lesson

See gee.cs.oswego.edu/dl/papers/fj.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

3

Mapping Parallel Streams
Onto the Java Fork-Join Pool

4

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run

Mapping Parallel Streams Onto the Common Fork-Join Pool

5

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run

In this lesson, we just care about tasks associated with parallel streams

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

45,000+ phrases

Search Phrases

Mapping Parallel Streams Onto the Common Fork-Join Pool

6

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run
• Goal is to keep worker threads

& cores as busy as possible!

Mapping Parallel Streams Onto the Common Fork-Join Pool

7

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run
• Goal is to keep worker threads

& cores as busy as possible!
• A worker thread has a “double-

ended queue” (aka “deque”) that
serves as its main source of tasks

See en.wikipedia.org/wiki/Double-ended_queue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Double-ended_queue

8

• The parallel streams framework automatically creates fork-join tasks that are
run by worker threads in the common fork-join pool

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

45,000+ phrases

Search Phrases

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Mapping Parallel Streams Onto the Common Fork-Join Pool

9

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 K taskToFork;
 if (forkRight)
 { forkRight = false; ... taskToFork = ...makeChild(rs); }
 else
 { forkRight = true; ... taskToFork = ...makeChild(ls); }
 taskToFork.fork();
 }
 } ...

See openjdk/8-b132/java/util/stream/AbstractTask.java

Manages splitting logic,
tracking of child tasks,

intermediate processing, &
notification of final results

Mapping Parallel Streams Onto the Common Fork-Join Pool

http://www.grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/stream/AbstractTask.java

10

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 K taskToFork;
 if (forkRight)
 { forkRight = false; ... taskToFork = ...makeChild(rs); }
 else
 { forkRight = true; ... taskToFork = ...makeChild(ls); }
 taskToFork.fork();
 }
 } ...

Decides whether to split a task
further and/or compute it directly

Mapping Parallel Streams Onto the Common Fork-Join Pool

11See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 K taskToFork;
 if (forkRight)
 { forkRight = false; ... taskToFork = ...makeChild(rs); }
 else
 { forkRight = true; ... taskToFork = ...makeChild(ls); }
 taskToFork.fork();
 }
 } ...

Keep partitioning input
source until trySplit()
returns null, indicating
nothing’s left to split

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

12

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 K taskToFork;
 if (forkRight)
 { forkRight = false; ... taskToFork = ...makeChild(rs); }
 else
 { forkRight = true; ... taskToFork = ...makeChild(ls); }
 taskToFork.fork();
 }
 } ...

Generic param K is an AbstractTask!

Mapping Parallel Streams Onto the Common Fork-Join Pool

See openjdk/8-b132/java/util/stream/AbstractTask.java

http://www.grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/stream/AbstractTask.java

13

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 K taskToFork;
 if (forkRight)
 { forkRight = false; ... taskToFork = ...makeChild(rs); }
 else
 { forkRight = true; ... taskToFork = ...makeChild(ls); }
 taskToFork.fork();
 }
 } ...

Alternate which child is forked in an attempt at
balancing the workload if the spliterator is biased

Mapping Parallel Streams Onto the Common Fork-Join Pool

14

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 K taskToFork;
 if (forkRight)
 { forkRight = false; ... taskToFork = ...makeChild(rs); }
 else
 { forkRight = true; ... taskToFork = ...makeChild(ls); }
 taskToFork.fork();
 }
 } ...

Fork a new child sub-task & continue
processing the other child in the loop

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

15

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 ...
 }
 task.setLocalResult(task.doLeaf());
 task.tryComplete();
 } ...

After trySplit() returns null this method typically calls forEachRemaining(),
which then processes all elements sequentially by calling tryAdvance()

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#forEachRemaining

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

16

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 ...
 }
 task.setLocalResult(task.doLeaf());
 task.tryComplete();
 } ...

The result of the leaf node computation
is stored via a call to setLocalResult()

Mapping Parallel Streams Onto the Common Fork-Join Pool

17

• The AbstractTask super class is used to implement most fork-join tasks in the
Java parallel streams framework
 abstract class AbstractTask ... { ...
 public void compute() {
 Spliterator<P_IN> rs = spliterator, ls;
 boolean forkRight = false; ...
 while(... (ls = rs.trySplit()) != null){
 ...
 }
 task.setLocalResult(task.doLeaf());
 task.tryComplete();
 } ...

Check if the task is done processing & if so trigger
the callback mechanism to notify parents up the tree

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html#tryComplete

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html

18

• After the AbstractTask.compute()
method calls fork() on a task this
task is pushed onto the head of
its worker thread’s deque

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

See gee.cs.oswego.edu/dl/papers/fj.pdf

2.push()
1.fork()

Mapping Parallel Streams Onto the Common Fork-Join Pool

http://gee.cs.oswego.edu/dl/papers/fj.pdf

19

• Each worker thread processes
its deque in LIFO order

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

2.pop()
1.join()

See en.wikipedia.org/wiki/Stack_(abstract_data_type)

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

20

• Each worker thread processes
its deque in LIFO order
• A task pop’d from the head of

a deque is run to completion

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

2.pop()
1.join()

See en.wikipedia.org/wiki/Run_to_completion_scheduling

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

21

• Each worker thread processes
its deque in LIFO order
• A task pop’d from the head of

a deque is run to completion
• LIFO order improves locality of

reference & cache performance

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

See en.wikipedia.org/wiki/Locality_of_reference

2.pop()
1...

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Locality_of_reference

22

• To maximize core utilization, idle
worker threads “steal” work from
the tail of busy threads’ deques

See earlier lessons on “The Java Fork-Join Framework”

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Mapping Parallel Streams Onto the Common Fork-Join Pool

23

• To maximize core utilization, idle
worker threads “steal” work from
the tail of busy threads’ deques
• An older stolen task may

provide a larger unit of work

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Mapping Parallel Streams Onto the Common Fork-Join Pool

List<String>1.1 List<String>1.2

List<String>1 List<String>2
trySplit()

List<String>

trySplit()
List<String>2.1 List<String>2.2

trySplit()

This behavior arises from “divide & conquer” nature of fork-join tasks that split evenly

24A parallel stream pushes larger chunks onto the deque before smaller chunks

• To maximize core utilization, idle
worker threads “steal” work from
the tail of busy threads’ deques
• An older stolen task may

provide a larger unit of work
• Enables further recursive

decompositions by the
stealing thread

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Mapping Parallel Streams Onto the Common Fork-Join Pool

25

End of Java Parallel Stream
Internals: Mapping Onto the
Common Fork-Join Pool

