Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
» Understand parallel stream internals

List<String>

I
trySplit()
List<String>4 List<String>,

trySplit() trySplit()

List<String>4 4 List<String>,,| |List<String>;;, List<String>,,

Process Process Process Process
sequentially sequentially sequentially sequentially

See developer.ibm.com/lanquages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

Learning Objectives in this Part of the Lesson

« Understand parallel stream internals, e.g.
« Know what can change & what can’t
change wrt splitting, applying, &
combining

to accept the things
C— I cannot change

to know the diﬂ‘erence /

See en.wikipedia.org/wiki/Serenity Prayer

https://en.wikipedia.org/wiki/Serenity_Prayer

Why Knowledge of
Parallel Streams Matters

Why Knowledge of Parallel Streams Matters

« Converting a Java sequential stream List<List<SearchResults>>

to a parallel stream is usually quite processStream() ({
straightforward return getlnput ()
.stream()
.map (this: :processInput)
.toList () ;

Changing stream() calls to
parallelStream() calls J
involves minuscule effort!! VS

List<List<SearchResults>>
processStream() {
return getInput ()

.parallelStream/()
.map (this: :processInput)
.toList () ;

}

See prior lesson on 'Java SearchWithParalle/Streams Example”

Why Knowledge of Parallel Streams Matters

« Converting a Java sequential stream List<List<SearchResults>>

to a parallel stream is usually quite processStream() ({
straightforward return getlnput()
_ _ .stream()
« However, just because creating a .map (this: :processInput)
parallel stream is easy doesn't .toList () ;

mean it’s the right thing to do! }

See upcoming lesson on "When to Not to Use Java Parallel Streams”

Why Knowledge of Parallel Streams Matters

» Therefore, knowledge of parallel streams internals will make you a better

Java streams programmer!

When performance is
critical, it's important
to understand how

kstreams work internally

List<String>

List<String>,

trySplit()

trySplit()

List<String>,

trySplit()

List<String>4 4 List<String>, »

List<String>5 4

List<String>,»

Process Process
sequentially sequentially

Process
sequentially

Process
sequentially

See developer.ibm.com/lanquages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

Why Knowledge of Parallel Streams Matters

 Recall the 3 phases of a Java parallel stream

5 sl bios 1o

| Stream factory operation ()

| I I I
: ’ @”lnputx ’

Intermediate operation (behavior f)

|

[1 "OUtpUt
: :: @n f(x) 1
I

Intermediate operation (behavior g)

l I . Output 'I
| 1 @:: g(f(x) |\

\ Terminal operatlon (reducer)

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Why Knowledge of Parallel Streams Matters

» Recall the 3 phases of a Java parallel stream | | | ...

* Split— Uses a spliterator to partition a | s 1L, oo on
data source into multiple chunks LTe PR ~Z I 5

| Stream factory operation ()

| I I I
: ’ @”lnputx ’

Intermediate operation (behavior f)

|

[1 "OUtpUt
: :: @n f(x) 1
I

Intermediate operation (behavior g)

l I I Output 'I
' } @ ! 9(f(x) |

\ Terminal operatlon (reducer)

Programmers have a great degree of control over this phase

Why Knowledge of Parallel Streams Matters

 Recall the 3 phases of a Java parallel stream

o5 el 1o

« Apply —Independently processes these | Stream factory operation ()

chunks in the common fork-join pool | :: @"Inputx I

Intermediate operation (behavior],

|

[1 "OUtpUt
: :: @n f(x) 1
I

Intermediate operation (behavior g)

l I I Output 'I
' } @ g(f(x)) |!

\ Terminal operatlon (reducer)

Programmers have a limited amount of control over this phase

Why Knowledge of Parallel Streams Matters

 Recall the 3 phases of a Java parallel stream

5 sl bios 1o

| Stream factory operation ()

: :i @nlnputx |:
« Combine — Joins partial sub-results into - , :

a single result Intermediate operation (behaviorﬂ

|

[1 "OUtpUt
: :: @n f(x) 1
I

Intermediate operation (behavior g)

l I I Output 'I
| 1 @:: g(f(x) |\

\ Terminal operatlon (reducer)

Programmers have a great degree of control over this phase

Why Knowledge of Parallel Streams Matters

 Recall the 3 phases of a Java parallel stream

o Split

o5 el 1o

| Stream factory operation ()

| 1 | h
« Combine : . g !'Inpmx!'

Intermediate operation (behavior f)

|
I]]
GOD grant me | I @ Oulp Ut
§€ . | I ()
|

to ACCEPT the things : :
I cannot change, Intermediate operation (behavior g)
@ | | |
CURAQEC to CHANGE | " @ | OL]’fp“t ;
W the things I can, and L g((X))
LSARIMN to know the difference. \ Terminal operation (reducer)

Knowing which phases you can control & which you cant can be very important!

End of Java Parallel Stream
Internals: Introduction

13

