
Java Parallel Streams Internals: 
Introduction

Douglas C. Schmidt
    d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt 

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand parallel stream internals
Learning Objectives in this Part of the Lesson

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

List<String>1.1 List<String>1.2 List<String>2.1 List<String>2.2

List<String>1 List<String>2
trySplit()

List<String>

trySplit() trySplit()

See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz 

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz


3

• Understand parallel stream internals, e.g.
• Know what can change & what can’t

change wrt splitting, applying, & 
combining

Learning Objectives in this Part of the Lesson

See en.wikipedia.org/wiki/Serenity_Prayer

https://en.wikipedia.org/wiki/Serenity_Prayer


4

Why Knowledge of 
Parallel Streams Matters



5

• Converting a Java sequential stream 
to a parallel stream is usually quite 
straightforward

See prior lesson on “Java SearchWithParallelStreams Example”

Why Knowledge of Parallel Streams Matters
List<List<SearchResults>> 
            processStream() {
  return getInput()
    .stream()
    .map(this::processInput)
    .toList();
}

vs

Changing stream() calls to 
parallelStream() calls 

involves minuscule effort!!
List<List<SearchResults>> 
            processStream() {
  return getInput()
    .parallelStream()
    .map(this::processInput)
    .toList();
}



6

• Converting a Java sequential stream 
to a parallel stream is usually quite 
straightforward
• However, just because creating a 

parallel stream is easy doesn’t 
mean it’s the right thing to do!

See upcoming lesson on “When to Not to Use Java Parallel Streams”

Why Knowledge of Parallel Streams Matters
List<List<SearchResults>> 
            processStream() {
  return getInput()
    .stream()
    .map(this::processInput)
    .toList();
}

vs
List<List<SearchResults>> 
            processStream() {
  return getInput()
    .parallelStream()
    .map(this::processInput)
    .toList();
}



7See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz 

• Therefore, knowledge of parallel streams internals will make you a better 
Java streams programmer!

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

List<String>1.1 List<String>1.2 List<String>2.1 List<String>2.2

List<String>1 List<String>2
trySplit()

List<String>

trySplit() trySplit()

When performance is 
critical, it's important
 to understand how 

streams work internally

Why Knowledge of Parallel Streams Matters

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz


8See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html  

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream
  

Output 
f(x)

Output 
g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html


9

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream
• Split – Uses a spliterator to partition a 

data source into multiple chunks
  

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

Programmers have a great degree of control over this phase



10

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream
• Split – Uses a spliterator to partition a 

data source into multiple chunks
• Apply – Independently processes these 

chunks in the common fork-join pool
  

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

Programmers have a limited amount of control over this phase



11

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream
• Split – Uses a spliterator to partition a 

data source into multiple chunks
• Apply – Independently processes these 

chunks in the common fork-join pool
• Combine – Joins partial sub-results into 

a single result
  

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

Programmers have a great degree of control over this phase



12

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream
• Split – Uses a spliterator to partition a 

data source into multiple chunks
• Apply – Independently processes these 

chunks in the common fork-join pool
• Combine – Joins partial sub-results into 

a single result
  

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

Knowing which phases you can control & which you can’t can be very important!



13

End of Java Parallel Stream 
Internals: Introduction


