
Avoiding Programming Hazards
with Java Parallel Streams

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Know how aggregate operations &
functional programming features are
applied seamlessly in parallel streams

• Be aware of how parallel stream phases
work “under the hood”

• Recognize common programming
hazards in Java parallel streams
& how to avoid them

Learning Objectives in this Part of the Lesson

Aggregate operation (Function f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (Function g)

Aggregate operation (Function h)

See earlier lesson on “Java Streams: Avoiding Common Programming Mistakes”

3

• Know how aggregate operations &
functional programming features are
applied seamlessly in parallel streams

• Be aware of how parallel stream phases
work “under the hood”

• Recognize common programming
hazards in Java parallel streams
& how to avoid them, e.g.
• Hazards with stateful lambda

expressions

Learning Objectives in this Part of the Lesson
class BuggyFactorial2 {
 static long factorial(long n){
 return LongStream
 .rangeClosed(1, n)

 .parallel()

 .mapToObj(Mult::new)

 .reduce(new Mult(0L),
 Mult::multiply)

 .bigInteger();
 } ...

4

• Know how aggregate operations &
functional programming features are
applied seamlessly in parallel streams

• Be aware of how parallel stream phases
work “under the hood”

• Recognize common programming
hazards in Java parallel streams
& how to avoid them, e.g.
• Hazards with stateful lambda

expressions
• Hazards from interference with

the data source

Learning Objectives in this Part of the Lesson
List<Integer> list = IntStream
 .range(0, 10)
 .boxed()
 .collect(toCollection
 (LinkedList::new));

 list
 .parallelStream()
 .peek(list::remove)
 .forEach(System.out::println);

5

Avoiding Programming
Hazards in Java Parallel

Streams

6

• The Java parallel streams framework assumes behaviors don’t incur race
conditions

See en.wikipedia.org/wiki/Race_condition#Software

Avoiding Programming Hazards in Java Parallel Streams

Race conditions arise when an app
depends on the sequence or timing
of threads for it to operate properly

Aggregate operation (Function f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (Function g)

Aggregate operation (Function h)

https://en.wikipedia.org/wiki/Race_condition

7See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html#side_effects

Avoiding Programming Hazards in Java Parallel Streams

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Input Strings to Search

…

45,000+ phrases

Search Phrases

parallelStream()

• Thus avoid (or at least) minimize behaviors
that have side-effects when programming
parallel streams

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

8

Hazards with Stateful
Lambda Expressions

9

• Avoid/minimize behaviors that use
stateful lambda expressions
• i.e., where results depend on

shared mutable state

Hazards with Stateful Lambda Expressions
class BuggyFactorial2 {
 static class Mult {
 long mLong;

 Mult(long l)
 { mLong = l; }

 Mult multiply(Mult mult) {
 mLong *= mult.mLong;
 return this;
 }

 long longValue()
 { return mLong; }
 } ...

See docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#Statelessness

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

10

• Avoid/minimize behaviors that use
stateful lambda expressions
• i.e., where results depend on

shared mutable state

Hazards with Stateful Lambda Expressions
class BuggyFactorial2 {
 static class Mult {
 long mLong;

 Mult(long l)
 { mLong = l; }

 Mult multiply(Mult mult) {
 mLong *= mult.mLong;
 return this;
 }

 long longValue()
 { return mLong; }
 } ...

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

This example
demonstrates
the problem

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

11

• Avoid/minimize behaviors that use
stateful lambda expressions
• i.e., where results depend on

shared mutable state

Hazards with Stateful Lambda Expressions
class BuggyFactorial2 {
 static class Mult {
 long mLong;

 Mult(long l)
 { mLong = l; }

 Mult multiply(Mult mult) {
 mLong *= mult.mLong;
 return this;
 }

 long longValue()
 { return mLong; }
 } ...

Defines mutable state that’s shared
between threads in a parallel stream

12

• Avoid/minimize behaviors that use
stateful lambda expressions
• i.e., where results depend on

shared mutable state
• & where this state that may change

in parallel execution of a pipeline

Hazards with Stateful Lambda Expressions
class BuggyFactorial2 {
 ...
 static long factorial(long n){
 return LongStream
 .rangeClosed(1, n)

 .parallel()

 .mapToObj(Mult::new)

 .reduce(new Mult(0L),
 Mult::multiply)

 .bigInteger();
 } ...

Incorrectly compute the factorial
of param n using a parallel stream

13

• Avoid/minimize behaviors that use
stateful lambda expressions
• i.e., where results depend on

shared mutable state
• & where this state that may change

in parallel execution of a pipeline

Hazards with Stateful Lambda Expressions
class BuggyFactorial2 {
 ...
 static long factorial(long n){
 return LongStream
 .rangeClosed(1, n)

 .parallel()

 .mapToObj(Mult::new)

 .reduce(new Mult(0L),
 Mult::multiply)

 .bigInteger();
 } ...

Race conditions may arise from
the unsynchronized access to the

mutable mLong field in Mult objects

This problem occurs even though we’re using the reduce() terminal operation!

14

class ParallelFactorial {
 static long factorial(long n){

 return LongStream
 .rangeClosed(1, n)

 .parallel()

 .reduce(1L,
 (x, y) -> x * y);
 } ...

• Avoid/minimize behaviors that use
stateful lambda expressions
• i.e., where results depend on

shared mutable state
• & where this state that may change

in parallel execution of a pipeline

Hazards with Stateful Lambda Expressions

Using the reduce() terminal
operation with immutable objects
trivially addresses these problems!

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

15

Hazards from Interference
with the Data Source

16

• Also avoid behaviors that interfere
with the data source
• This occurs when source of stream

is modified within the pipeline

See docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#NonInterference

Hazards from Interference with the Data Source
List<Integer> list = IntStream
 .range(0, 10)
 .boxed()
 .collect(toCollection
 (LinkedList::new));

 list
 .parallelStream()
 .peek(list::remove)
 .forEach(System.out::println);

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

17

• Also avoid behaviors that interfere
with the data source
• This occurs when source of stream

is modified within the pipeline

Hazards from Interference with the Data Source
List<Integer> list = IntStream
 .range(0, 10)
 .boxed()
 .collect(toCollection
 (LinkedList::new));

 list
 .parallelStream()
 .peek(list::remove)
 .forEach(System.out::println);

Create a list of ten integers in range 0..9

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex11

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex11

18

• Also avoid behaviors that interfere
with the data source
• This occurs when source of stream

is modified within the pipeline

Hazards from Interference with the Data Source
List<Integer> list = IntStream
 .range(0, 10)
 .boxed()
 .collect(toCollection
 (LinkedList::new));

 list
 .parallelStream()
 .peek(list::remove)
 .forEach(System.out::println);

If a non-concurrent collection is modified
while it’s being operated on by the parallel
stream the results will be chao & insanity!!

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

19

Avoiding Parallel
Programming Hazards

20

• Behaviors involving no shared state or side-effects are useful for parallel
streams since they needn’t be synchronized explicitly

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

Avoiding Parallel Programming Hazards

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

45,000+ phrases

Search Phrases

parallelStream()

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

21

• Behaviors involving no shared state or side-effects are useful for parallel
streams since they needn’t be synchronized explicitly
• e.g., Java lambda expressions & method

references that are “pure functions”

See en.wikipedia.org/wiki/Pure_function

return mList.size() == 0;

return new SearchResults
 (Thread.currentThread().getId(),
 currentCycle(), phrase, title,
 StreamSupport
 .stream(new PhraseMatchSpliterator
 (input, phrase),
 parallel)
 .collect(toList()));

Avoiding Parallel Programming Hazards

toList()

45,000+ phrases

Search Phrases

parallelStream()

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

https://en.wikipedia.org/wiki/Pure_function

22

• If it’s necessary to access & update shared
mutable state in a parallel stream make sure
to synchronize it properly!

Avoiding Parallel Programming Hazards

…
0 1 2 n

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

Segment
Locks

filter(not(this::urlCached))

toList()

List of URLs to Download

…

map(this::blockingDownload)

flatMap(this::applyFilters)

mImageCache

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

ConcurrentHashMap

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

23

• If it’s necessary to access & update shared
mutable state in a parallel stream make sure
to synchronize it properly!

Avoiding Parallel Programming Hazards

…
0 1 2 n

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

Segment
Locks

ConcurrentHashMap

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

filter(not(this::urlCached))

toList()

List of URLs to Download

…

map(this::blockingDownload)

flatMap(this::applyFilters)

mImageCache

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

24

End of Avoiding
Programming Hazards with

Java Parallel Streams

