Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

DataSource
» Learn how parallel stream phases —
1ySpli
work “under the hood” YOI
DataSource, DataSource,
trySplit() trySplit()
DataSource; 4 DataSource; , DataSource, 4 DataSource, ,
I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially

See developer.ibm.com/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/articles/j-java-streams-3-brian-goetz/

Overview of How a
Parallel Stream Works

Overview of How a Parallel Stream Works

A Java parallel stream implements
a “map/reduce” variant optimized
for multi-core processors

See en.wikipedia.org/wiki/MapReduce

http://en.wikipedia.org/wiki/MapReduce

Overview of How a Parallel Stream Works

A Java parallel stream implements DataSource
a "map/reduce” variant optimized T
. TySpli
for multi-core processors Datasource; DataSouTe,
« It's actually a three phase
“split-apply-combine” trySpit() trySpirt)
data processin g Strategy DataSolurcel_1 DataSciurcel_2 DataSc?urcezl1 DataSc|>urce2.2
Process Process Process Process
sequentially sequentially sequentially sequentially

See www.jstatsoft.org/article/view/v040i01

http://www.jstatsoft.org/article/view/v040i01

Overview of How a Parallel Stream Works

« The split-apply-combine phases are: CollectionData
1. Split — Recursively partition a

) trySplit()
data source into “chunks” CollectionData; CollectionData,
trySplit() trySplit()
CollectionData; 4 CollectionData; CollectionData, 1 CollectionData, »

See en.wikipedia.org/wiki/Divide and conguer algorithm

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Overview of How a Parallel Stream Works

» The split-apply-combine phases are: CollectionData
1. Split - Recu_rswe“ly partlt’I’OI‘l a TSl
data source into chunks CollectionData; CollectionData,
trySplit() trySplit()
CollectionData; 1 CollectionData; > CollectionData, 1 CollectionData, »

>SN\

Each chunk is an independent &
Yatomic” subset of the data source

See upcoming lesson on “Java Parallel Stream Internals. Partitioning”

Overview of How a Parallel Stream Works

» The split-apply-combine phases are: CollectionData
1. Split - Recu_rswe“ly partlt’I’OI‘l a trySot)
data source into “chunks CollectionData; CollectionData;
. Spllllter_ators_ pﬁrtmon])
Co ECtIOHS In Java CollectionData; 1 CollectionData; > CollectionData, 1 CollectionData, »

public interface Spliterator<T> {
boolean tryAdvance (Consumer<? Super T> action);

Spliterator<T> trySplit();
long estimateSize() ;

int characteristics|() ;

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

Overview of How a Parallel Stream Works

» The split-apply-combine phases are:
1. Split — Recursively partition a

CollectionData

data source into “chunks” CollectionData,

 Spliterators partition

trySplit()

trySplit()

collections in Java CollectionDatay <

CollectionData; >

CollectionData,

trySplit()

CollectionData, 1 CollectionData, »

Used for sequential
(& parallel) streams

}

public interface Spliterator<T> {
boolean tryAdvance (Consumer<? Super T> action);

— | Spliterator<T> trySplit();
long estimateSize() ;

int characteristics|() ;

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#tryAdvance

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

Overview of How a Parallel Stream Works

» The split-apply-combine phases are:
1. Split — Recursively partition a

CollectionData

data source into “chunks” CollectionData,

 Spliterators partition

trySplit()

trySplit()

collections in Java CollectionDatay <

CollectionData; >

CollectionData,

trySplit()

CollectionData, 1 CollectionData, »

Usedonlyfor |
parallel streams

}

public interface Spliterator<T> {
boolean tryAdvance (Consumer<? Super T> action);

Spliterator<T> trySplit();
long estimateSize() ;

int characteristics|() ;

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

Overview of How a Parallel Stream Works

» The split-apply-combine phases are: InputString
1. Split - Recu_rswe“ly partlt’I’OI‘l a TSl
data source into “chunks InputString, InputString,
trySplit() trySplit()
InputString; 4 InputString; » InputString, 4 InputString, »

« Each Java collection
has a spliterator

}

}
}

interface Collection<E> {

default Spliterator<E> spliterator() ({
return Spliterators.spliterator (this,

default Stream<E> parallelStream() ({
return StreamSupport.stream(spliterator(), true);

0);

See docs.oracle.com/javase/8/docs/api/java/util/Collection.html

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

Overview of How a Parallel Stream Works

» The split-apply-combine phases are: InputString

1. Split - Recu_rswe“ly partlt’I’OI’l a trySplit()
data source into “chunks InputString, InputString,
trySplit() trySplit()

InputString; 4 InputString; » InputString, 4 InputString, »

* Programmers can define
custom spliterators

See github.com/douglascraigschmidt/Livel essons/tree/master/SearchStreamSpliterator

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator

Overview of How a Parallel Stream Works

» The split-apply-combine phases are: InputString

1. Split - Recu_rswe“ly partlt’I’OI‘l a TSl
data source into “chunks InputString, InputString,
trySplit() trySplit()

InputString; 4 InputString; » InputString, 4 InputString, »

 Parallel streams perform better
on data sources that can be
split efficiently & evenly

See www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

http://www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

Overview of How a Parallel Stream Works
» The split-apply-combine phases are:

2. Apply — Process chunks in
common fork-join pool
. . N I
Process Process Process Process
sequentially sequentially sequentially sequentially

~4, Pool of worker thread®

See lesson on “Java Farallel Stream Internals: Parallel Processing via the Cormmon ForkJoinPool’

Overview of How a Parallel Stream Works
The split-apply-combine phases are: InputString

trySplit()
InputString, InputString,

2. Apply — Process chunks in

trySplit() trySplit()

common fork-join pool

InputString; 4 InputString; » InputString, 4 InputString, »

Process Process Process Process
sequentially sequentially sequentially sequentially

\ "

4 Po a2
: ol of worker thre2™>"
\' or /

Splitting & applying run simultaneously (after certain limits met), not sequentially

Overview of How a Parallel Stream Works
» The split-apply-combine phases are:

2. Apply — Process chunks in
common fork-join pool
- Utilization’s maximized | L S L
-\ - Process Process Process Process
via “work- Stea“ng sequentially sequentially sequentially sequentially

4 poo] of worker threa®®

See lesson on “Java Parallel Stream Internals: Mapping onto the Cormmon ForkJoinPool’

Overview of How a Parallel Stream Works
» The split-apply-combine phases are:

2. Apply — Process chunks in
common fork-join pool
I D D b
Process Process Process Process
sequentially sequentially sequentially sequentially

» Programmers can control
of threads in the pool

Controller | Plant R < — — |
HTi g " N =< LSS =S g
4 %
Feedback « Pool of worker thre?

See lesson on “Java Parallel Stream Internals: Conﬁ_gur/h_g the Common Fork=Join Pool’

Overview of How a Parallel Stream Works

» The split-apply-combine phases are:

3. Combine - Join partial
results to a single result

See upcoming lessons on “Java Parallel Stream Internals: Combining Results”

Overview of How a Parallel Stream Works
» The split-apply-combine phases are:

3. Combine - Join partial
results to a single result

« Performed by terminal
operations

» e.g., collect() & reduce()

See www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

http://www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

Overview of How a Parallel Stream Works
» The split-apply-combine phases are:

3. Combine - Join partial
results to a single result

 Collectors can either be
» Concurrent — synchronized
« Non-concurrent — non-synchronized

See lessons on “Java Parallel Stream Intemals: Non-Concurrent & Concurrent Collectors”’

Overview of How a Parallel Stream Works
» The split-apply-combine phases are: N " 7

3. Combine - Join partial
results to a single result

 Collectors can either be
» Concurrent — synchronized
« Non-concurrent — non-synchronized

Programmers can define custom collectors

End of How Java Parallel
Streams Work “Under the Hood"

22

