
An Overview of Parallelism
& Java Parallel Streams

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Know how aggregate operations & functional

programming features are applied seamlessly
in parallel streams

Output
f(x)

Output
g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

3

Transitioning from
Sequential Streams to

Parallel Streams

4

Transitioning from Sequential Streams to Parallel Streams
• A Java stream is a pipeline of aggregate operations that process a sequence

of elements (aka, “values” or “data”)

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

stream()

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

5

Transitioning from Sequential Streams to Parallel Streams
• A Java stream is a pipeline of aggregate operations that process a sequence

of elements (aka, “values” or “data”)

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

stream()

Aggregate operations use internal iteration & behaviors to process elements in a stream

6

Transitioning from Sequential Streams to Parallel Streams
• By default, a stream executes sequentially, so all its aggregate operations run

behaviors in a single thread of control

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

stream()

7

• When a stream executes in parallel, it is partitioned into multiple “chunks”
that run in the common fork-join pool

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

8

• When a stream executes in parallel, it is partitioned into multiple “chunks”
that run in the common fork-join pool

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

Threads in the fork-join pool (non-deterministically) process different chunks

9

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

• When a stream executes in parallel, it is partitioned into multiple “chunks”
that run in the common fork-join pool

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

Intermediate operations cleverly process behaviors on these chunks in parallel

10

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

• When a stream executes in parallel, it is partitioned into multiple “chunks”
that run in the common fork-join pool

A terminal operation triggers processing & combines the chunks into a single result

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

11

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

• When a stream executes in parallel, it is partitioned into multiple “chunks”
that run in the common fork-join pool

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

(Stateless) Java lambda expressions & method references are used to pass behaviors

12

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

• When a stream executes in parallel, it is partitioned into multiple “chunks”
that run in the common fork-join pool

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

stream() vs. parallelStream()

Transitioning from Sequential Streams to Parallel Streams

Ideally, minuscule changes are needed to transition from sequential to parallel stream

13See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

• The same aggregate operations can be used for sequential & parallel streams

Transitioning from Sequential Streams to Parallel Streams

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

14

• The same aggregate operations can be used for sequential & parallel streams

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

e.g., SearchStreamGang uses the same aggregate
operations for both SearchWithSequentialStreams
& SearchWithParallelStreams implementations

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

stream() vs. parallelStream()

Transitioning from Sequential Streams to Parallel Streams

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

15

• The same aggregate operations can be used for sequential & parallel streams
• Java streams can thus treat parallelism as an

optimization & leverage all available cores!

See qconlondon.com/london-2017/system/files/presentation-slides/concurrenttoparallel.pdf

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

https://qconlondon.com/london-2017/system/files/presentation-slides/concurrenttoparallel.pdf

16

• The same aggregate operations can be used for sequential & parallel streams
• Java streams can thus treat parallelism as an

optimization & leverage all available cores!
• Behaviors run by aggregate operations must

be designed carefully to avoid accessing
unsynchronized shared mutable data..

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

Shared Mutable
Data

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

17

• The same aggregate operations can be used for sequential & parallel streams
• Java streams can thus treat parallelism as an

optimization & leverage all available cores!
• Behaviors run by aggregate operations must

be designed carefully to avoid accessing
unsynchronized shared mutable data..
• An easy way to avoid shared mutable

data is to use stateless behaviors

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

toList()

Search Phrases

parallelStream()

Transitioning from Sequential Streams to Parallel Streams

See en.wikipedia.org/wiki/Side_effect_(computer_science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

18

End of An Overview of
Parallelism & Java
Parallel Streams

