
How Pre-defined Non-Concurrent
Collectors are Implemented

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of non-concurrent collectors for sequential
streams

• Know the API for non-concurrent
collectors

• Recognize how pre-defined non-concurrent
 collectors are implemented in the JDK

3

How Pre-defined Non-
Concurrent Collectors

are Implemented

4

How Pre-defined Non-Concurrent Collectors are Implemented

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

• Collectors is a utility class whose
factory methods create collectors
for common collection types

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

5

How Pre-defined Non-Concurrent Collectors are Implemented

See www.quora.com/What-is-the-best-way-to-write-utility-classes-in-Java/answer/Jon-Harley

• Collectors is a utility class whose
factory methods create collectors
for common collection types
• A utility class is final, has only

static methods, no (non-static)
state, & a private constructor

http://www.quora.com/What-is-the-best-way-to-write-utility-classes-in-Java/answer/Jon-Harley

6

How Pre-defined Non-Concurrent Collectors are Implemented

See openjdk/8-b132/java/util/stream/Collectors.java#Collectors.CollectorImpl

• CollectorImpl defines a simple implementation
class used to make a Collector

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/stream/Collectors.java

7

How Pre-defined Non-Concurrent Collectors are Implemented
• CollectorImpl defines a simple implementation

class used to make a Collector
• However, this class is private to

Collectors & is only used internally
by the Streams framework

8

How Pre-defined Non-Concurrent Collectors are Implemented

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toList

• Collectors.toList() uses Collector
Impl to return a non-concurrent
collector that accumulates input
elements into a new (Array)List

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, List<T>>
 toList() {
 return new CollectorImpl<>
 (ArrayList::new,
 List::add,
 (left, right) -> {
 left.addAll(right);
 return left;
 },
 CH_ID);
 } ...

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

9

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toList() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Array)List

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, List<T>>
 toList() {
 return new CollectorImpl<>
 (ArrayList::new,
 List::add,
 (left, right) -> {
 left.addAll(right);
 return left;
 },
 CH_ID);
 } ...

The supplier constructor reference

10

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toList() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Array)List

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, List<T>>
 toList() {
 return new CollectorImpl<>
 (ArrayList::new,
 List::add,
 (left, right) -> {
 left.addAll(right);
 return left;
 },
 CH_ID);
 } ...

The accumulator method reference

11

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toList() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Array)List

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, List<T>>
 toList() {
 return new CollectorImpl<>
 (ArrayList::new,
 List::add,
 (left, right) -> {
 left.addAll(right);
 return left;
 },
 CH_ID);
 } ...

The combiner lambda expression

This combiner is only used for parallel streams

12CH_ID is defined as Collector.Characteristics.IDENTITY_FINISH

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toList() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Array)List

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, List<T>>
 toList() {
 return new CollectorImpl<>
 (ArrayList::new,
 List::add,
 (left, right) -> {
 left.addAll(right);
 return left;
 },
 CH_ID);
 } ...

Characteristics set

13

How Pre-defined Non-Concurrent Collectors are Implemented

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#toSet

• Collectors.toSet() uses Collector
Impl to return a non-concurrent
collector that accumulates input
elements into a new (Hash)Set

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, Set<T>>
 toSet() {
 return new CollectorImpl<>
 (HashSet::new,
 Set::add,
 (left, right) -> {
 ...
 },
 CH_UNORDERED_ID);
 } ...

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

14

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toSet() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Hash)Set

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, Set<T>>
 toSet() {
 return new CollectorImpl<>
 (HashSet::new,
 Set::add,
 (left, right) -> {
 ...
 },
 CH_UNORDERED_ID);
 } ...

The supplier constructor reference

15

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toSet() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Hash)Set

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, Set<T>>
 toSet() {
 return new CollectorImpl<>
 (HashSet::new,
 Set::add,
 (left, right) -> {
 ...
 },
 CH_UNORDERED_ID);
 } ...

The accumulator method reference

16

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, Set<T>>
 toSet() {
 return new CollectorImpl<>
 (HashSet::new,
 Set::add,
 (left, right) -> {
 ...
 },
 CH_UNORDERED_ID);
 } ...

if (left.size() < right.size())
 right.addAll(left); return right;
else
 left.addAll(right); return left;

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toSet() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Hash)Set

The combiner lambda expression
adds the smaller set to the larger set

This combiner is only used for parallel streams

17CH_UNORDERED_ID is defined as UNORDERED & IDENTITY_FINISH

How Pre-defined Non-Concurrent Collectors are Implemented
• Collectors.toSet() uses Collector

Impl to return a non-concurrent
collector that accumulates input
elements into a new (Hash)Set

final class Collectors {
 ...
 public static <T> Collector
 <T, ?, Set<T>>
 toSet() {
 return new CollectorImpl<>
 (HashSet::new,
 Set::add,
 (left, right) -> {
 ...
 },
 CH_UNORDERED_ID);
 } ...

Characteristics set

18

How Pre-defined Non-Concurrent Collectors are Implemented

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#of

• Collector.of() defines a simple
public factory method that
implements a Collector

interface Collector<T, A, R> { ...
 static<T, R> Collector<T, R, R> of
 (Supplier<R> supplier,
 BiConsumer<R, T> accumulator,
 BinaryOperator<R> combiner,
 Characteristics... chars) {
 ...
 return new Collectors
 .CollectorImpl<>
 (supplier,
 accumulator,
 combiner,
 chars);
 } ...

This of() method is passed four
params (last param is optional)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

19

How Pre-defined Non-Concurrent Collectors are Implemented
• Collector.of() defines a simple

public factory method that
implements a Collector

interface Collector<T, A, R> { ...
 static<T, R> Collector<T, R, R> of
 (Supplier<R> supplier,
 BiConsumer<R, T> accumulator,
 BinaryOperator<R> combiner,
 Function<A,R> finisher,
 Characteristics... chars) {
 ...
 return new Collectors
 .CollectorImpl<>
 (supplier,
 accumulator,
 combiner,
 finisher,
 chars); ...

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#of

This of() method is passed five
params (last param is optional)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

20

How Pre-defined Non-Concurrent Collectors are Implemented

See openjdk/8-b132/java/util/stream/Collectors.java#Collectors.CollectorImpl

• Collector.of() defines a simple
public factory method that
implements a Collector
• Both of() versions internally use

the private CollectorImpl class

interface Collector<T, A, R> { ...
 static<T, R> Collector<T, R, R> of
 (Supplier<R> supplier,
 BiConsumer<R, T> accumulator,
 BinaryOperator<R> combiner,
 Function<A,R> finisher,
 Characteristics... chars) {
 ...
 return new Collectors
 .CollectorImpl<>
 (supplier,
 accumulator,
 combiner,
 finisher,
 chars); ...

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/stream/Collectors.java

21

End of How Pre-defined
Non-Concurrent Collectors

are Implemented

