
Understanding the Java Streams
Non-Concurrent Collector API

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of non-concurrent collectors for

sequential streams
• Know the API for non-concurrent

collectors

The same API is also used for concurrent collectors!

3

The Non-Concurrent
Collector API

4See www.baeldung.com/java-8-collectors

The Non-Concurrent Collector API
• The Collector interface defines

three generic types

http://www.baeldung.com/java-8-collectors

5

The Non-Concurrent Collector API
• The Collector interface defines

three generic types
• T – The type of elements available

in the stream
• e.g., Long, String, SearchResults,

etc.

6

The Non-Concurrent Collector API
• The Collector interface defines

three generic types
• T
• A – The type of mutable accumulator

object to use for collecting elements
• e.g., List or Map of T, which can

be implemented via ArrayList,
HashMap, etc.

7

The Non-Concurrent Collector API
• The Collector interface defines

three generic types
• T
• A
• R – The type of the final result
• e.g., List or Map of T

The type of R & A may or may not be different (& are often the same)!

8

• Five factory methods are defined in
the Collector interface

The Non-Concurrent Collector API

Again, this discussion assumes we’re implementing a non-concurrent collector

9

• Five factory methods are defined in
the Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations

The Non-Concurrent Collector API

10

• Five factory methods are defined in
the Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• The collector need not preserve

the encounter order

The Non-Concurrent Collector API

11

• Five factory methods are defined in
the Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• The collector need not preserve

the encounter order

The Non-Concurrent Collector API

A collector may preserve encounter order if it incurs no additional overhead

12

• Five factory methods are defined in
the Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• The finisher() is the identity

function so it can be a no-op
• e.g., finisher() just returns null

The Non-Concurrent Collector API

13

• Five factory methods are defined in
the Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT
• The accumulator method is called

concurrently on the result container

The Non-Concurrent Collector API

The mutable result container must be synchronized!!

14

• Five factory methods are defined in
the Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT
• The accumulator method is called

concurrently on the result container

The Non-Concurrent Collector API

We’re focusing on a non-concurrent collector, which doesn’t enable CONCURRENT

15

• Five factory methods are defined in
the Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.

The Non-Concurrent Collector API

See docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

Set characteristics() {
 return Collections.unmodifiableSet
 (EnumSet.of(Collector.Characteristics.CONCURRENT,
 Collector.Characteristics.UNORDERED,
 Collector.Characteristics.IDENTITY_FINISH));
}

Any/all characteristics can
be set using EnumSet.of()

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

16

• Five factory methods are defined in
the Collector interface
• characteristics()
• supplier() – returns a Supplier

that acts as a factory to generate
an empty result container

The Non-Concurrent Collector API

17

• Five factory methods are defined in
the Collector interface
• characteristics()
• supplier() – returns a Supplier

that acts as a factory to generate
an empty result container, e.g.

The Non-Concurrent Collector API

Supplier<List> supplier() {
 return ArrayList::new;
}

See docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ArrayList

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

18

• Five factory methods are defined in
the Collector interface
• characteristics()
• supplier()
• accumulator() – returns a Bi-

Consumer that adds a new element
to an existing result container, e.g.

The Non-Concurrent Collector API

BiConsumer<List, Integer> accumulator() {
 return List::add;
}

A non-concurrent collector needs no synchronization

See docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#add

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

19

• Five factory methods are defined in
the Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner() – returns a Binary

Operator that merges two result
containers together, e.g.

The Non-Concurrent Collector API

This combiner() will not be called for a sequential stream..

BinaryOperator<List> combiner() {
 return (one, another) -> {
 one.addAll(another);
 return one;
 }};

20

• Five factory methods are defined in
the Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a Function

that converts the result container
to final result type, e.g.
• return Function.identity()

The Non-Concurrent Collector API

21

• Five factory methods are defined in
the Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a Function

that converts the result container
to final result type, e.g.
• return Function.identity()
• return null;

The Non-Concurrent Collector API

Should be a no-op if IDENTITY_FINISH characteristic is set

22

• Five factory methods are defined in
the Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a function

that converts the result container
to final result type, e.g.
• return Function.identity()
• return null;

The Non-Concurrent Collector API

See Java8/ex19/src/main/java/utils/FuturesCollector.java

Stream
 .generate(() ->
 makeBigFraction
 (new Random(), false))
 .limit(sMAX_FRACTIONS)

 .map(reduceAndMultiplyFraction)
 .collect(FuturesCollector
 .toFuture())

 .thenAccept
 (this::sortAndPrintList);

finisher() can also be
much more interesting!

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex19/src/main/java/utils/FuturesCollector.java

23

End of Understanding the
Java Streams Non-

Concurrent Collector API

