
Understand Java Streams
Non-Concurrent Collectors

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of non-concurrent collectors for

sequential streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

3

Overview of Non-
Concurrent Collectors

4

• The collect() terminal operation
uses a collector to accumulate
stream elements into a mutable
result container

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors
void runCollectToList() {
 List<String> characters = Arrays
 .asList("horatio", "laertes",
 "Hamlet, ...);

 List<String> results =
 characters
 .stream()
 .filter(s ->
 toLowerCase(…) =='h')
 .map(this::capitalize)
 .sorted()
 .collect(toList()); ...

Collect the results into a ArrayList

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

5

• The collect() terminal operation
uses a collector to accumulate
stream elements into a mutable
result container
• Collector is defined by a

generic interface

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

6

• The collect() terminal operation
uses a collector to accumulate
stream elements into a mutable
result container
• Collector is defined by a

generic interface
• T – stream elements type
• A – accumulator type
• R – result type

Overview of Non-Concurrent Collectors

7

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

8

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors

9

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams, e.g.
• Non-concurrent collectors
• Run in a sequential or parallel stream

but do not support concurrent
accumulation

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors

10

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams, e.g.
• Non-concurrent collectors
• Run in a sequential or parallel stream

but do not support concurrent
accumulation
• Each thread accumulates results in

its own container & merge in a
single-threaded manner at the end

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors

There’s no need to synchronize non-concurrent collectors

11

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams, e.g.
• Non-concurrent collectors
• Concurrent collectors
• Support parallel accumulation directly
• Multiple threads concurrently

accumulate results into a
single shared container

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors

Concurrent collector accumulator methods must be synchronized!

12

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams
• Our focus here is on non-concurrent

collectors for sequential streams

Non-concurrent & concurrent collectors for parallel streams are covered later

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors

13

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams
• Our focus here is on non-concurrent

collectors for sequential streams
• Using concurrent collectors for

sequential streams is overkill
& pointless!!

Overview of Non-Concurrent Collectors

14

• A non-concurrent collector for a sequential
stream simply accumulates elements into a
mutable result container

Overview of Non-Concurrent Collectors

15

• A collector is essentially the inverse
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

Overview of Non-Concurrent Collectors

16

• A collector is essentially the inverse
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

A spliterator partitions one input
source into a stream of elements

Overview of Non-Concurrent Collectors

17

• A collector is essentially the inverse
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

A collector combines a stream of
elements back into a single result

Overview of Non-Concurrent Collectors

18

End of Understand
Java Streams Non-

Concurrent Collectors

