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Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of non-concurrent collectors for 

sequential streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html
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Overview of Non-
Concurrent Collectors
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• The collect() terminal operation 
uses a collector to accumulate 
stream elements into a mutable 
result container

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors
void runCollectToList() {
  List<String> characters = Arrays
   .asList("horatio", "laertes",
            "Hamlet, ...);

  List<String> results =
    characters
      .stream()
      .filter(s -> 
        toLowerCase(…) =='h') 
      .map(this::capitalize)
      .sorted()
      .collect(toList()); ...

Collect the results into a ArrayList

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html
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• The collect() terminal operation 
uses a collector to accumulate 
stream elements into a mutable 
result container
• Collector is defined by a 

generic interface

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html
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• The collect() terminal operation 
uses a collector to accumulate 
stream elements into a mutable 
result container
• Collector is defined by a 

generic interface
• T – stream elements type
• A – accumulator type
• R – result type

Overview of Non-Concurrent Collectors
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams, e.g.
• Non-concurrent collectors 
• Run in a sequential or parallel stream 

but do not support concurrent 
accumulation

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams, e.g.
• Non-concurrent collectors 
• Run in a sequential or parallel stream 

but do not support concurrent 
accumulation
• Each thread accumulates results in 

its own container & merge in a 
single-threaded manner at the end

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors

There’s no need to synchronize non-concurrent collectors
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams, e.g.
• Non-concurrent collectors 
• Concurrent collectors
• Support parallel accumulation directly 
• Multiple threads concurrently 

accumulate results into a 
single shared container

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors

Concurrent collector accumulator methods must be synchronized!
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams
• Our focus here is on non-concurrent

collectors for sequential streams

Non-concurrent & concurrent collectors for parallel streams are covered later

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…
Overview of Non-Concurrent Collectors
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics
• This distinction is only relevant for

parallel streams
• Our focus here is on non-concurrent

collectors for sequential streams
• Using concurrent collectors for

sequential streams is overkill
& pointless!!

Overview of Non-Concurrent Collectors
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• A non-concurrent collector for a sequential 
stream simply accumulates elements into a 
mutable result container

Overview of Non-Concurrent Collectors
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• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

Overview of Non-Concurrent Collectors
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• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

A spliterator partitions one input 
source into a stream of elements

Overview of Non-Concurrent Collectors
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• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

A collector combines a stream of 
elements back into a single result

Overview of Non-Concurrent Collectors
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End of Understand 
Java Streams Non-

Concurrent Collectors


