
Java Stream Internals: Execution

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand stream internals, e.g.
• Know what can change & what can’t
• Recognize how a Java stream is

constructed
• Be aware of how a Java stream is

executed
• e.g., how stateless & stateful

intermediate operations & run-
to-completion & short-circuiting
terminal operations are run

Learning Objectives in this Part of the Lesson

3

Java Stream Execution

4

• When terminal operation runs the streams framework picks an execution plan

See developer.ibm.com/technologies/java/articles/j-java-streams-3-brian-goetz/#executing-a-stream-pipeline

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Execution

https://developer.ibm.com/technologies/java/articles/j-java-streams-3-brian-goetz/

5

• When terminal operation runs the streams framework picks an execution plan
• The plan is based on properties of the

source & aggregate operations

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Execution

6

• When terminal operation runs the streams framework picks an execution plan
• The plan is based on properties of the

source & aggregate operations
• Intermediate operations are divided

into two categories

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Execution

7

• When terminal operation runs the streams framework picks an execution plan
• The plan is based on properties of the

source & aggregate operations
• Intermediate operations are divided

into two categories:
• Stateless
• e.g., filter(), map(), flatMap(),

mapMulti(), etc.

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

A pipeline with only stateless operations runs in one pass (even if it’s parallel)

Java Stream Execution

8

• When terminal operation runs the streams framework picks an execution plan
• The plan is based on properties of the

source & aggregate operations
• Intermediate operations are divided

into two categories:
• Stateless
• Stateful
• e.g., sorted(), limit(), distinct(),

dropWhile(), takeWhile(), etc.

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

A pipeline with stateful operations is divided into sections & runs in multiple passes

Java Stream Execution

9

• When terminal operation runs the streams framework picks an execution plan
• The plan is based on properties of the

source & aggregate operations
• Intermediate operations are divided

into two categories
• Terminal operations are also divided

into two categories

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Execution

10

• When terminal operation runs the streams framework picks an execution plan
• The plan is based on properties of the

source & aggregate operations
• Intermediate operations are divided

into two categories
• Terminal operations are also divided

into two categories
• Run-to-completion
• e.g., reduce(), collect(),

forEach(), etc.

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

These terminal operation process data in bulk using Spliterator.forEachRemaining()

Java Stream Execution

R collect(Collector<…> collector)

11

• When terminal operation runs the streams framework picks an execution plan
• The plan is based on properties of the

source & aggregate operations
• Intermediate operations are divided

into two categories
• Terminal operations are also divided

into two categories
• Run-to-completion
• Short-circuiting
• e.g., anyMatch(),

findFirst(), etc.

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R anyMatch(Predicate<…> pred)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Execution

These terminal operation process data one element at a time using tryAdvance().

12

End of Java Stream
Internals: Execution

