
Java Stream Internals: Construction

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand stream internals, e.g.
• Know what can change & what can’t
• Recognize how a Java stream is

constructed
• i.e., the data structures & stages

used to create & optimize a
Java stream at run-time

Learning Objectives in this Part of the Lesson

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

3

Java Stream Construction

4

• Recall that intermediate operations are “lazy”

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

Input x

Output f(x)

Output g(f(x))

Java Stream Construction

…

Stream sorted()
Output h(g(f(x)))

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

5

• Recall that intermediate operations are “lazy”
• i.e., they don’t start to run until

a terminal operator is reached

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Construction

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

6

• A stream pipeline is constructed at runtime via an internal representation

See developer.ibm.com/technologies/java/articles/j-java-streams-3-brian-goetz/#building-a-stream-pipeline

At runtime a linked list of stream source
& intermediate operations is built &

optimized, one per “stage” in pipeline

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R toList()

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

List<String> ls = ...
List<String> sortedAWords = ls
 .stream()
 .map(String::toUpperCase)
 .filter(s ->
 s.startsWith("A"))
 .sorted()
 .toList();

Output h(g(f(x)))

Java Stream Construction

https://developer.ibm.com/technologies/java/articles/j-java-streams-3-brian-goetz/

7

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally

Stream Flag Interpretation
SIZED Size of stream is known
DISTINCT Elements of stream are

distinct
SORTED Elements of the stream

are sorted in natural order
ORDERED Stream has meaningful

encounter order

These flags are a subset of the flags that can be defined by a spliterator

R toList()

Input x

Output f(x)

Output g(f(x))

…

Output h(g(f(x)))

Java Stream Construction

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

Stream sorted()

8

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics, e.g. Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R toList()

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Construction

Stream generate() & iterate() methods create streams that are not sized!

Collection Sized Ordered Sorted Distinct

ArrayList P P

HashSet P P

TreeSet P P P P

9

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics
• Each intermediate operation affects

the stream flags

R toList()

Input x

Output f(x)

Output g(f(x))

…

Output h(g(f(x)))

Java Stream Construction

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

Stream sorted()

10

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics
• Each intermediate operation affects

the stream flags, e.g.
• map()
• Clears SORTED & DISTINCT

but keeps SIZED

Stream filter(Predicate<…> pred)

R toList()

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Construction

Stream map(Function<…> mapper)

11

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics
• Each intermediate operation affects

the stream flags, e.g.
• map()
• filter()
• Keeps SORTED & DISTINCT

but clears SIZED

Stream map(Function<…> mapper)

R toList()

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Construction

Stream filter(Predicate<…> pred)

12

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics
• Each intermediate operation affects

the stream flags, e.g.
• map()
• filter()
• sorted()
• Keeps SIZED & DISTINCT &

adds SORTED

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R toList()

Input x

Output f(x)

Output g(f(x))

…

Output h(g(f(x)))

Java Stream Construction

Stream sorted()

13

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics
• Each intermediate operation affects

the stream flags
• The flags at each stage are updated

as the pipeline is being constructed

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R toList()

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Construction

14

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics
• Each intermediate operation affects

the stream flags
• The flags at each stage are updated

as the pipeline is being constructed
• e.g., flags for a previous stage are

combined with the current stage’s
behavior to derive a new set of flags

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R toList()

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Java Stream Construction

15

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a

bitmap of stream flags internally
• Source stage stream flags are derived

from spliterator characteristics
• Each intermediate operation affects

the stream flags
• The flags at each stage are updated

as the pipeline is being constructed
• e.g., flags for a previous stage are

combined with the current stage’s
behavior to derive a new set of flags

Set<String> ts =
 new TreeSet<>(...);

List<String> sortedAWords =
 ts
 .stream()
 .filter(s ->
 s.startsWith("A"))
 .sorted()
 .toList();

The streams framework removes
redundant operations since the

source is already sorted

Java Stream Construction

16

End of Java Stream
Internals: Construction

