
The Java Streams reduce()
Terminal Operation (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand common terminal operations, e.g.
• forEach()
• collect()
• reduce()
• Know how reduce() performs an

immutable reduction
• Both the two- & three-parameter

versions

void runCollectReduce() {
 Map<String, Long>
 matchingCharactersMap =
 ...

 long sumOfNameLengths =
 matchingCharactersMap
 .values()
 .stream()
 .reduce(0L,
 Long::sum);

We showcase reduce()
using the Hamlet program

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

3

A Stream Terminal Operation
That Returns a Primitive

4See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

• The reduce() terminal operation
typically returns a primitive value

void runCollectReduce1() {
 Map<String, Long>
 matchingCharactersMap =
 ...

 long sumOfNameLengths =
 matchingCharactersMap
 .values()
 .stream()
 .reduce(0L,
 Long::sum);

A Stream Terminal Operation That Returns a Primitive

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

5

• The reduce() terminal operation
typically returns a primitive value

void runCollectReduce1() {
 Map<String, Long>
 matchingCharactersMap =
 ...
 .collect
 (groupingBy
 (identity(),
 TreeMap::new,
 summingLong
 (String::length)));

Create a map associating the names of
Hamlet characters with their name lengths.

A Stream Terminal Operation That Returns a Primitive

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

6

• The reduce() terminal operation
typically returns a primitive value

void runCollectReduce1() {
 Map<String, Long>
 matchingCharactersMap =
 ...

 long sumOfNameLengths =
 matchingCharactersMap
 .values()
 .stream()
 .reduce(0L,
 Long::sum);

A Stream Terminal Operation That Returns a Primitive

Convert the map’s collection of values into a stream of long values.

7

• The reduce() terminal operation
typically returns a primitive value

void runCollectReduce1() {
 Map<String, Long>
 matchingCharactersMap =
 ...

 long sumOfNameLengths =
 matchingCharactersMap
 .values()
 .stream()
 .reduce(0L,
 Long::sum);

Sum up the lengths of all character names in Hamlet.

A Stream Terminal Operation That Returns a Primitive

8

• The reduce() terminal operation
typically returns a primitive value

0 is the “identity,” i.e., the initial value of the reduction &
the default result if there are no elements in the stream.

void runCollectReduce1() {
 Map<String, Long>
 matchingCharactersMap =
 ...

 long sumOfNameLengths =
 matchingCharactersMap
 .values()
 .stream()
 .reduce(0L,
 Long::sum);

A Stream Terminal Operation That Returns a Primitive

9

void runCollectReduce1() {
 Map<String, Long>
 matchingCharactersMap =
 ...

 long sumOfNameLengths =
 matchingCharactersMap
 .values()
 .stream()
 .reduce(0L,
 Long::sum);

• The reduce() terminal operation
typically returns a primitive value

This method reference is an “accumulator,” which is a stateless function
that combines two values into a single (immutable) “reduced” value.

A Stream Terminal Operation That Returns a Primitive

See docs.oracle.com/javase/8/docs/api/java/lang/Long.html#sum

https://docs.oracle.com/javase/8/docs/api/java/lang/Long.html

10

• The reduce() terminal operation
typically returns a primitive value

void runCollectReduce1() {
 Map<String, Long>
 matchingCharactersMap =
 ...

 long sumOfNameLengths =
 matchingCharactersMap
 .values()
 .stream()
 .reduce(0L,
 (x, y) -> x + y);

A lambda expression could also be used here.

A Stream Terminal Operation That Returns a Primitive

See stackoverflow.com/a/24493905

https://stackoverflow.com/a/24493905

11

The Three-Parameter
Version of reduce()

12

• The three-parameter version of
reduce() separates the accumulator
from the combiner

void runCollectMapReduce() {
 List<String> characterList =
 ...

 long sumOfNameLengths =
 characterList
 .parallelStream()
 .reduce(0L,
 (sum, s) ->
 sum + s.length(),
 Long::sum);

The Three-Parameter Version of reduce()

Accumulator

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

Combiner

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

13

• The three-parameter version of
reduce() separates the accumulator
from the combiner
• This variant is primarily used for

parallel streams

void runCollectMapReduce() {
 List<String> characterList =
 ...

 long sumOfNameLengths =
 characterList
 .parallelStream()
 .reduce(0L,
 (sum, s) ->
 sum + s.length(),
 Long::sum);

The Three-Parameter Version of reduce()

See www.youtube.com/watch?v=oWlWEKNM5Aw

http://www.youtube.com/watch?v=oWlWEKNM5Aw

14

• The three-parameter version of
reduce() separates the accumulator
from the combiner
• This variant is primarily used for

parallel streams

Generate a consistently capitalized
& sorted list of names of Hamlet

characters starting with the letter ‘h’.

void runCollectMapReduce() {
 List<String> characterList =
 ...

 long sumOfNameLengths =
 characterList
 .parallelStream()
 .reduce(0L,
 (sum, s) ->
 sum + s.length(),
 Long::sum);

The Three-Parameter Version of reduce()

15

• The three-parameter version of
reduce() separates the accumulator
from the combiner
• This variant is primarily used for

parallel streams

Convert the list into a parallel stream.

void runCollectMapReduce() {
 List<String> characterList =
 ...

 long sumOfNameLengths =
 characterList
 .parallelStream()
 .reduce(0L,
 (sum, s) ->
 sum + s.length(),
 Long::sum);

The Three-Parameter Version of reduce()

16

• The three-parameter version of
reduce() separates the accumulator
from the combiner
• This variant is primarily used for

parallel streams

Perform a reduction on the stream with an initial value of 0.

void runCollectMapReduce() {
 List<String> characterList =
 ...

 long sumOfNameLengths =
 characterList
 .parallelStream()
 .reduce(0L,
 (sum, s) ->
 sum + s.length(),
 Long::sum);

The Three-Parameter Version of reduce()

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

17

• The three-parameter version of
reduce() separates the accumulator
from the combiner
• This variant is primarily used for

parallel streams

This lambda expression is an accumulator BiFunction
that performs the “map” operation in the apply phase.

void runCollectMapReduce() {
 List<String> characterList =
 ...

 long sumOfNameLengths =
 characterList
 .parallelStream()
 .reduce(0L,
 (sum, s) ->
 sum + s.length(),
 Long::sum);

The Three-Parameter Version of reduce()

Map

Reduce

See docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html

18

• The three-parameter version of
reduce() separates the accumulator
from the combiner
• This variant is primarily used for

parallel streams

This method reference is a combiner BinaryOperator that
performs the “reduce” operation in the combine phase.

void runCollectMapReduce() {
 List<String> characterList =
 ...

 long sumOfNameLengths =
 characterList
 .parallelStream()
 .reduce(0L,
 (sum, s) ->
 sum + s.length(),
 Long::sum);

The Three-Parameter Version of reduce()

See docs.oracle.com/javase/8/docs/api/java/lang/Long.html#sum

Map

Reduce

https://docs.oracle.com/javase/8/docs/api/java/lang/Long.html

19

• The three-parameter version of
reduce() separates the accumulator
from the combiner
• This variant is primarily used for

parallel streams
• It can also be used when the type

being streamed is different from
the type of the accumulator

void runCollectMapReduceEx() {
 Map<String, Double> base =
 new HashMap<>() { ... }
 Map<String, Double> actual =
 new HashMap<>() { ... }

 Double percentageChange = base
 .entrySet()
 .parallelStream()
 .reduce(0.0,
 (sum, entry) -> {
 ...
 return sum + ...;
 },
 Double::sum);

The Three-Parameter Version of reduce()

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

‘sum’ is a Double &
‘entry’ is a Map.Entry<>

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

20

End of the Java Streams
reduce() Terminal Operation

(Part 1)

