Terminal Operations

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality
of Java Streams terminal operations

« Terminal operations start the internal
iteration of stream elements, trigger
the intermediate operations, & produce
some result




Learning Objectives in this Part of the Lesson

« Understand the structure & functionality - - - - ccoc o oo

of Java Streams terminal operations

« Terminal operations start the internal
iteration of stream elements, trigger

some result

95 @ii Input x éé

Intermediate operation (Behavior f)
I

Intermediate operation (Behavior g)

These operations also apply to
both sequential & parallel streams

|
|
I
I
|

. . . I

the intermediate operations, & produce | U I Output f(x)

I ]|
I 11
|
I
I
|
I
|

] W Output g(f(x))
1

Terminal operation (Behavior h)




Learning Objectives in this Part of the Lesson
« Understand the structure & functionality

of Java Streams terminal operations @A”ay of names

« Terminal operations start the internal of(*horatio”, ‘laertes’, *Hamlet’, .. )
iteration of stream elements, trigger {} Stream of names
the intermediate operations, & produce

filter(s->toLowerCase(s.charAt(0)...)
{} Stream of names starting with ‘h’

some result

We continue to showcase [apitisicapiglze)
the “"Hamlet” program {} Stream of capitalized names
sorted()
\ {} Stream of sorted names
forEach()




Overview of
Terminal Operations




Overview of Common Stream Terminal Operations

» Every stream finishes with a terminal

operation that (typically) yields a non-
stream result .

-
Stream

.0f ("horatio",
"laertes", :
"Hamlet", ...) |

.filter (s -> toLowerCase

(s.charAt(0)) == 'h')

.map (this: :capitalize)

.sorted()

.forEach (System.out: :println) ;

{} Input x

Intermediate operation (behavior f)

! | Output f(x)

Intermediate operation (behavior g)

& | | Output g(f(x))

Terminal operation (behavior h)

J

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12



https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Overview of Common Stream Terminal Operations

» Every stream finishes with a terminal  |y;,5 stream : foreachordered() vs
operation that (typically) yields a non-  |forEach()
stream result, e.qg.
On this page we will provide differences between

° NO Va | ue at a | I Stream. forEachOrdered() and Stream.forEach() methods. Both

methods perform an action as Consumer. The difference between

° e. g . fOrEaCh() & forEachOrdered () and forEach() methods is that forEachOrdered() will

always perform given action in encounter order of elements in stream

fO rEaChordered() whereas forEach() method is non-deterministic. In parallel stream
forEach () method may not necessarily respect the order whereas
forEachOrdered () will always respect the order. In sequential stream both
methods respect the order. So we should use forEachOrdered() method, if
we want action to be perform in encounter order in every case whether the
stream is sequential or parallel. If the stream is sequential, we can use any

method to respect order. But if stream can be parallel too, then we should

use forEachOrdered () method to respect the order.

These terminal operations
both “run-to-completion”

See www.concretepage.com/java/java-8/java-stream-foreachordered-vs-foreach



http://www.concretepage.com/java/java-8/java-stream-foreachordered-vs-foreach

Overview of Common Stream Terminal Operations

 Every stream finishes with a terminal ,

operation that (typically) yields a non- - & -
stream result, e.g.
* No value at all
- e.g., forEach() & 4:/2.'3 W_lay ;CaUSQ
forEachOrdered() 1:7 DlZZl neSs |
May cause
forEach() & forEachOrdered() ‘
only have side-effects! h ead aC he
0 NOT take with

Nitrates.




Overview of Common Stream Terminal Operations

« Every stream finishes with a terminal stream

operation that (typically) yields a non-  .of("horatio",
stream result, e.g. "laertes",
- No value at all ‘Hamlet”, ...)
O va .filter (s -> tolLowerCase
* e.g, forEaCh() & (s.charAt(0)) == 'h')
forEachOrdered() .map (this: :capitalize)
.sorted()
.forEach

////// (System.out: :println) ;

Print each character in Hamlet that starts with 'H’
or 'h’in consistently capitalized & sorted order.




Overview of Common Stream Termlnal Operatlons

 Every stream finishes with a terminal Peseae
operation that (typically) yields a non- /
stream result, e.g.

* The result of a reduction
operation

« e.g., collect() & reduce()

These terminal operatlons .
both “run-to-completion”

See docs.oracle.com/javase/tutorial/collections/streams/reduction.html



https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

Overview of Common Stream Terminal Operations

« Every stream finishes with a terminal \

operation that (typically) yields a non- vz il v ’é_ =
stream result, e.qg. Iy -

parallelStream()

|
« The result of a reduction @ |: Input x

operation pRv——— . o BT
nitermeaqiate operation (oenavior
» e.g., collect() & reduce() i

I

|

I

I

|

I

|

I

I

h |
@ n Output f(x) I
| I
|

I

|

I

I

|

I

collect() & reauce() terminal operations

Intermediate operation (behavior g)
work seamlessly with parallel streams. '

@ \ Output g(f(x))
L

Terminal operation (behavior h)

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html



https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Overview of Common Stream Terminal Operations

« Every stream finishes with a terminal List<String> countries = Arrays
operation that (typically) yields a non- .asList("france", "india",
stream result, e.g. "china", "usa");

print (countries.stream()
.filter (country -> country
.contains ("1"))
.findFirst() .get());

« An Optional or boolean value print (countries.stream/()

- e.g., findAny(), findFirst(), -filter (szztzzn;iio?r)ltry

noneMatch(), allMatch(), etc. _f£indAny () .get()) ;

print (countries.stream()
.noneMatch (country -> country

.contains("z"))) ;

See dzone.com/articles/collectors-part-1-%E2%80%93-reductions



https://dzone.com/articles/collectors-part-1-%E2%80%93-reductions

Overview of Common Stream Terminal Operations

« Every stream finishes with a terminal List<String> countries = Arrays
operation that (typically) yields a non- .asList("france", "india",
stream result, e.g. "china", "usa");

print (countries.stream()
.filter (country -> country
.contains ("1"))
.findFirst() .get());

« An Optional or boolean value print (countries.stream/()

- e.g., findAny(), findFirst(), -filter (szztzzn;iio?;ltry

noneMatch(), allMatch(), etc. FindAny () .get()) ;
. print (countries.stream()

These terminal .noneMatch (country -> country

operations are .contains ("z")));
"short-circuiting”

13




Overview of the collect() Terminal Operation

« A terminal operation also triggers all the ] ] ~ | o
(“lazy”) intermediate operation processing oiv=ainininininininininininini ik

Stream()

@ Input x

Intermediate operation (behavior f)

|
|
|
|
|
I
[
I
|
|
Q ; Output f(x) :
|
I
[
I
|
|
|

Intermediate operation (behavior g)

@ Output g(f(x))

Terminal operation (behavior h)




End of Overview of Java
Streams Terminal Operations

15



