
Overview of Java Streams
Terminal Operations

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of Java Streams terminal operations
• Terminal operations start the internal

iteration of stream elements, trigger
the intermediate operations, & produce
some result

3

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of Java Streams terminal operations
• Terminal operations start the internal

iteration of stream elements, trigger
the intermediate operations, & produce
some result

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

These operations also apply to
both sequential & parallel streams

4

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of Java Streams terminal operations
• Terminal operations start the internal

iteration of stream elements, trigger
the intermediate operations, & produce
some result

We continue to showcase
the “Hamlet” program

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Array of names

forEach()

5

Overview of
Terminal Operations

6

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Output f(x)

Output g(f(x))

…

Input x

Overview of Common Stream Terminal Operations

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Stream
 .of("horatio",
 "laertes",
 "Hamlet", ...)
 .filter(s -> toLowerCase
 (s.charAt(0)) == 'h')
 .map(this::capitalize)
 .sorted()
 .forEach(System.out::println);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

7

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result, e.g.
• No value at all
• e.g., forEach() &

forEachOrdered()

Overview of Common Stream Terminal Operations

These terminal operations
both “run-to-completion”

See www.concretepage.com/java/java-8/java-stream-foreachordered-vs-foreach

http://www.concretepage.com/java/java-8/java-stream-foreachordered-vs-foreach

8

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result, e.g.
• No value at all
• e.g., forEach() &

forEachOrdered()

Overview of Common Stream Terminal Operations

forEach() & forEachOrdered()
only have side-effects!

9

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result, e.g.
• No value at all
• e.g., forEach() &

forEachOrdered()

Overview of Common Stream Terminal Operations
Stream
 .of("horatio",
 "laertes",
 "Hamlet", ...)
 .filter(s -> toLowerCase
 (s.charAt(0)) == 'h')
 .map(this::capitalize)
 .sorted()
 .forEach
 (System.out::println);

Print each character in Hamlet that starts with ‘H’
or ‘h’ in consistently capitalized & sorted order.

10

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result, e.g.
• No value at all
• The result of a reduction

operation
• e.g., collect() & reduce()

See docs.oracle.com/javase/tutorial/collections/streams/reduction.html

Overview of Common Stream Terminal Operations

These terminal operations
both “run-to-completion”

https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

11

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result, e.g.
• No value at all
• The result of a reduction

operation
• e.g., collect() & reduce()

Overview of Common Stream Terminal Operations

Intermediate operation (behavior f)

Output f(x)

Output g(f(x))

Intermediate operation (behavior g)

Terminal operation (behavior h)

…

Input x

parallelStream()

collect() & reduce() terminal operations
work seamlessly with parallel streams.

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

12

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result, e.g.
• No value at all
• The result of a reduction

operation
• An Optional or boolean value
• e.g., findAny(), findFirst(),

noneMatch(), allMatch(), etc.

Overview of Common Stream Terminal Operations

See dzone.com/articles/collectors-part-1-%E2%80%93-reductions

List<String> countries = Arrays
 .asList("france", "india",
 "china", "usa");

print(countries.stream()
 .filter(country -> country
 .contains("i"))
 .findFirst().get());

print(countries.stream()
 .filter(country -> country
 .contains("i"))
 .findAny().get());

print(countries.stream()
 .noneMatch(country -> country
 .contains("z")));

https://dzone.com/articles/collectors-part-1-%E2%80%93-reductions

13

• Every stream finishes with a terminal
operation that (typically) yields a non-
stream result, e.g.
• No value at all
• The result of a reduction

operation
• An Optional or boolean value
• e.g., findAny(), findFirst(),

noneMatch(), allMatch(), etc.

Overview of Common Stream Terminal Operations
List<String> countries = Arrays
 .asList("france", "india",
 "china", "usa");

print(countries.stream()
 .filter(country -> country
 .contains("i"))
 .findFirst().get());

print(countries.stream()
 .filter(country -> country
 .contains("i"))
 .findAny().get());

print(countries.stream()
 .noneMatch(country -> country
 .contains("z")));

These terminal
operations are

“short-circuiting”

14

• A terminal operation also triggers all the
(“lazy”) intermediate operation processing

Overview of the collect() Terminal Operation

Intermediate operation (behavior f)

Output f(x)

Output g(f(x))

Intermediate operation (behavior g)

Terminal operation (behavior h)

…

Input x

stream()

15

End of Overview of Java
Streams Terminal Operations

