
Understanding Java Streams
Aggregate Operations

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of stream aggregate operations

Intermediate operation (Behavior f)

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

3

Overview of Stream
Aggregate Operations

4

Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• An aggregate operation is a higher-order

function that applies a “behavior” on
elements in a stream

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

See en.wikipedia.org/wiki/Higher-order_function

Output h(g(f(x)))
A “higher order function” is a function
that is passed a function as a param

…

https://en.wikipedia.org/wiki/Higher-order_function

5

Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• An aggregate operation is a higher-order

function that applies a “behavior” on
elements in a stream

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

Output h(g(f(x)))

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

…

The behavior can be a lambda or
method reference to a Function,

Predicate, Consumer, Supplier, etc.

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

6

Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• Aggregate operations form a declarative

pipeline that emphasizes the “what” &
deemphasizes the “how”

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

See blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

What

How

Output h(g(f(x)))

…

https://blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

7

Overview of Stream Aggregate Operations

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

• There are two types of aggregate operations …

8

• There are two types of aggregate operations
• Intermediate operations
• Process elements in their input stream

& yield an output stream
• e.g., filter(), map(), flatMap(),

takeWhile(), dropWhile(), etc.

Overview of Stream Aggregate Operations

See geekylearner.com/java-stream-intermediate-operations-learn-by-examples

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

…

https://geekylearner.com/java-stream-intermediate-operations-learn-by-examples/

9

• There are two types of aggregate operations
• Intermediate operations
• Process elements in their input stream

& yield an output stream
• Intermediate operations can be further

classified via several dimensions

Overview of Stream Aggregate Operations

Run-to-
completion

Shorct-
Circuiting

Stateful distinct(),
skip(),
sorted()

limit(),
takeWhile(),
dropWhile(),
etc.

Stateless filter(),
map(),
flatMap(),
etc.

N/A

10

• There are two types of aggregate operations
• Intermediate operations
• Process elements in their input stream

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Store info from a prior

invocation for use in a
future invocation

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(),
skip(),
sorted()

limit(),
takeWhile(),
dropWhile(),
etc.

Stateless filter(),
map(),
flatMap(),
etc.

N/A

See stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations

https://stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations/

11

• There are two types of aggregate operations
• Intermediate operations
• Process elements in their input stream

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Do not store info from any prior

invocations

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(),
skip(),
sorted()

limit(),
takeWhile(),
dropWhile(),
etc.

Stateless filter(),
map(),
flatMap(),
etc.

N/A

See javapapers.com/java/java-stream-api

https://javapapers.com/java/java-stream-api/

12

• There are two types of aggregate operations
• Intermediate operations
• Process elements in their input stream

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Do not store info from any prior

invocations

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(),
skip(),
sorted()

limit(),
takeWhile(),
dropWhile(),
etc.

Stateless filter(),
map(),
flatMap(),
etc.

N/A

See automationrhapsody.com/java-8-features-stream-api-explained

Stateless operations often require significantly fewer
processing & memory resources than stateful operations!

https://automationrhapsody.com/java-8-features-stream-api-explained/

13

• There are two types of aggregate operations
• Intermediate operations
• Process elements in their input stream

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Run-to-completion
• Process all elements

in the input stream

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(),
skip(),
sorted()

limit(),
takeWhile(),
dropWhile(),
etc.

Stateless filter(),
map(),
flatMap(),
etc.

N/A

See en.wikipedia.org/wiki/Run_to_completion_scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

14

• There are two types of aggregate operations
• Intermediate operations
• Process elements in their input stream

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Run-to-completion
• Short-circuiting
• Make stream operate

on a reduced size

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(),
skip(),
sorted()

limit(),
takeWhile(),
dropWhile(),
etc.

Stateless filter(),
map(),
flatMap(),
etc.

N/A

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

15

• There are two types of aggregate operations
• Intermediate operations
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• e.g., forEach(), reduce(), collect(),

findAny(), etc.

Overview of Stream Aggregate Operations

See www.leveluplunch.com/java/examples/stream-terminal-operations-example

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

A stream must have one (&
only one) terminal operation

http://www.leveluplunch.com/java/examples/stream-terminal-operations-example

16

• There are two types of aggregate operations
• Intermediate operations
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• Terminal operations can also be

classified via several dimensions

Overview of Stream Aggregate Operations

Operation Type Examples
Run-to-
completion

reduce(), collect(),
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(),
findFirst(),
noneMatch()

17

• There are two types of aggregate operations
• Intermediate operations
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• Terminal operations can also be

classified via several dimensions, e.g.
• Run-to-completion
• Terminate only after processing

all elements in the stream

Overview of Stream Aggregate Operations

Operation Type Examples
Run-to-
completion

reduce(), collect(),
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(),
findFirst(),
noneMatch()

18

• There are two types of aggregate operations
• Intermediate operations
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• Terminal operations can also be

classified via several dimensions, e.g.
• Run-to-completion
• Short-circuiting
• May cause a stream to terminate before

processing all values

Overview of Stream Aggregate Operations

Operation Type Examples
Run-to-
completion

reduce(), collect(),
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(),
findFirst(),
noneMatch()

19

Interesting Stream
Aggregate Operation

Interactions

20

• Intermediate operations are optional in a
Java stream

Interesting Stream Aggregate Operation Interactions

Input x

…

long hamletCharacters = Stream
 .of("horatio", "laertes",
 "Hamlet", ...)
 .count();

Terminal operation (Behavior h)

21

• Intermediate operations are optional in a
Java stream
• However, the semantics of the count()

terminal operation may be counter-
intuitive

Interesting Stream Aggregate Operation Interactions

Input x

…

long hamletCharacters = Stream
 .of("horatio", "laertes",
 "Hamlet", ...)
 .peek(System.out::print)
 .count();

Terminal operation (Behavior h)

See mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count

As of Java 9 peek() prints nothing when
combined with count() since the count

can be computed directly from the source

https://mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count/

22

• Intermediate operations are optional in a
Java stream
• However, the semantics of the count()

terminal operation may be counter-
intuitive

Interesting Stream Aggregate Operation Interactions

Input x

…

long hamletCharacters = Stream
 .of("horatio", "laertes",
 "Hamlet", ...)
 .filter(x -> !x.isEmpty())
 .count();

Terminal operation (Behavior h)

To force the peek() to run, just appear
to access some elements with filter()

Output f(x)

Intermediate operation (Behavior f)

23

End of Understanding Java
Streams Aggregate

Operations

