Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality of stream aggregate operations

! | Input x

Intermediate operation (Behavior f)

! | Output f(x)

Intermediate operation (Behavior g)

! Output g(f(x))

Terminal operation (Behavior h)

Overview of Stream
Aggregate Operations

Overview of Stream Aggregate Operations

» An aggregate operation is a higher-order
function that applies a “behavior” on HEONEE.. OeEOEE

elements in a stream @ Input x

Aggregate operation (Behavior f)

@ Output f(x)

Aggregate operation (Behavior g)

@ Output g(f(x))

Aggregate operation (Behavior h)

A "higher order function” is a function
that is passed a function as a param Output h(g(f(x)))

See en.wikipedia.org/wiki/Higher-order function

https://en.wikipedia.org/wiki/Higher-order_function

Overview of Stream Aggregate Operations

* An aggregate operation is a higher-order
ggregate o g EEOEEE.. O

function that applies a “behavior” on

elements in a stream @ Input x

Aggregate operation (Behavior 1)

@ Output f(x)

Aggregate operation (Behavior q)
The behavior can be a lambda or /

method reference to a Function, | | Output g(f(x))
Predicate, Consumer, Supplier; etc.

Aggregate operation (Behavior h)

Output h(g(f(x)))

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

Overview of Stream Aggregate Operations

« Aggregate operations form a declarative
pipeline that emphasizes the “what” & NEONNE.. . ONEE N

e —

deemphasizes the “how” @ Input x

Aggregate operation (Behavior f)

@ Output f(x)

Aggregate operation (Behavior g)

@ Output g(f(x))

Aggregate operation (Behavior h)

Output h(g(f(x)))

See blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

https://blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

Overview of Stream Aggregate Operations

« There are two types of aggregate operations

@ Input x

Intermediate operation (Behavior f)

@ Output f(x)

Intermediate operation (Behavior g)

@ Output g(f(x))

Terminal operation (Behavior h)

Overview of Stream Aggregate Operations

 There are two es of aggregate operations
types of aggregate op EELEEE. ONELEE

- Intermediate operations
+ Process elements in their input stream @ Input x

& yield an output stream Intermediate operation (Behavior f)
« e.g., filter(), map(), flatMap(),
takeWhile(), dropWhile(), etc. @ Output f(x)

Intermediate operation (Behavior g)

@ Output g(f(x))

Terminal operation (Behavior h)

See geekylearner.com/java-stream-intermediate-operations-learn-by-examples

https://geekylearner.com/java-stream-intermediate-operations-learn-by-examples/

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Shorct-
completion | Circuiting

Stateful distinct(), limit(),

- Intermediate operations can be further SkiF;Od' 'élakevv\\//w_lle()'
classified via several dimensions sorted() ropWhile(),

etc.
Stateless filter(), N/A
map(),
flatMap(),
etc.

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Short-
completion | Circuiting

Stateful distinct(), limit(),

» Intermediate operations can be further skip(), takewhile(),
classified via several dimensions, e.g. it lf g{gpwmleo’
* Stateful . <« -~ Stateless filter(), N/A
 Store info from a prior [} map(),
invocation for use in a 1 flatMap(),
future invocation etc.

Py -

HISTORY

See stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations

https://stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations/

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Short-
completion | Circuiting

Stateful distinct(), limit(),

- Intermediate operations can be further SkiF;Od' 'élakevv\\//w_lle()'
classified via several dimensions, e.g. sergal; | e,

etc.
Stateless filter(), N/A
» Stateless map(),
« Do not store info from any prior flatMap(),
invocations etc.

See javapapers.com/java/java-stream-api

https://javapapers.com/java/java-stream-api/

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Short-
completion | Circuiting

Stateful distinct(), limit(),
skip(), takeWhile(),
sorted() dropWhile(),

etc.

 Intermediate operations can be further
classified via several dimensions, e.g.

Stateless filter(), N/A

» Stateless map(),
« Do not store info from any prior flatMap(),

invocations ete.

Stateless operations often require significantly fewer
processing & memory resources than stateful operations!

See automationrhapsody.com/java-8-features-stream-api-explained

https://automationrhapsody.com/java-8-features-stream-api-explained/

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Short-
Circuiting

Stateful distinct(), limit(),

- Intermediate operations can be further Skilz()é Elakevv\\//r;li_lle(),
classified via several dimensions, e.g. serEnl; | elepiinlEl),

etc.
Stateless filter(), N/A
map(),
« Run-to-completion Q?CtMap(),

e Process all elements

in the input stream M

See en.wikipedia.org/wiki/Run to completion scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to-
completion

Stateful distinct(), limit(),

« Intermediate operations can be further Skilrié()é Eake\\//vvrr\]i_lle(),
classified via several dimensions, e.g. senedl)) | el@pihlEl)

etc.
Stateless filter(), N/A
| map(),
| l‘l Z . flatMap(),
| ~ etc.
« Short-circuiting ‘L|—
’_

eh

« Make stream operate
on a reduced size

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

Overview of Stream Aggregate Operations

 There are two es of aggregate operations
types of aggregate op EEOEEE COEECOEE

- Terminal operations @ Input x
 Trigger intermediate operations & Intermediate operation (Behavior f)
produce a non-stream result
. e.g., forEach(), reduce(), collect(), @ Output 1(x)
findAny(), etc. Intermediate operation (Behavior g)
A stream must have one (&
only one) terminal operation @ Output g(f(x))
\

Terminal operation (Behavior h)

.

o
ONLY ONE}; *

See www.leveluplunch.com/java/examples/stream-terminal-operations-example

http://www.leveluplunch.com/java/examples/stream-terminal-operations-example

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

Operation Type

- Terminal operations Run-to- reduce(), collect(),
completion forEach(), etc.

Short-circuiting allMatch(),

. - - anyMatCh()r
Terminal operations can also be findAny(),

classified via several dimensions findFirst(),
noneMatch()

16

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

Operation Type

- Terminal operations Run-to- reduce(), collect(),
completion forEach(), etc.
Short-circuiting allMatch(),
- Terminal operations can also be z%mti;‘o'
classified via several dimensions, e.g. i dFith()’
* Run-to-completion noneMatch()

« Terminate only after processing
all elements in the stream

17

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

Operation Type

- Terminal operations Run-to- reduce(), collect(),
completion forEach(), etc.

Short-circuiting allMatch(),

| - | anyMatch(),
Terminal operations can also be findAny(),

classified via several dimensions, e.g. findFirst()
noneMatch()

« Short-circuiting
« May cause a stream to terminate before
processing all values

‘1;\

18

Interesting Stream
Aggregate Operation
Interactions

19

Interesting Stream Aggregate Operation Interactions

 Intermediate operations are optional in a
Java stream EELEEE, NSO

long hamletCharacters = Stream ~~7
.of ("horatio", "laertes", Terminal operation (Behavior h)
"Hamlet", ...)
.count () ;

20

Interesting Stream Aggregate Operation Interactions

 Intermediate operations are optional in a

Java stream

« However, the semantics of the count()
terminal operation may be counter-

intuitive

As of Java 9 peek() prints nothing when
combined with count() since the count
can be computed directly from the source

/

\

long hamletCharacters = Stream

.0f ("horatio", "laertes",
"Hamlet",/ ...)

.peek (System.out: :print)

.count () ;

=

|

Terminal operation (Behavior h)

See mkyongd.com/java8/java-8-stream-the-peek-is-not-working-with-count

https://mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count/

Interesting Stream Aggregate Operation Interactions

 Intermediate operations are optional in a

Java stream

« However, the semantics of the count()
terminal operation may be counter-

intuitive

10 force the peek() to run, just appear

to access some elements with filter()

\

\

long hamletChar

.0f ("horatio",
"Hamlet",

"laertes",

..)

é:ters = Stream

.filter(x -> !'x.isEmpty())

.count () ;

=

|

! | Input x

Intermediate operation (Behavior f)

Output f(x)

Terminal operation (Behavior h)

22

End of Understanding Java
Streams Aggregate
Operations

23

