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Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of stream aggregate operations

Intermediate operation (Behavior f)

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior g)

Terminal operation (Behavior h)
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Overview of Stream 
Aggregate Operations 
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Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• An aggregate operation is a higher-order 

function that applies a “behavior” on 
elements in a stream

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

See en.wikipedia.org/wiki/Higher-order_function

Output h(g(f(x)))
A “higher order function” is a function 
that is passed a function as a param

…

https://en.wikipedia.org/wiki/Higher-order_function
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Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• An aggregate operation is a higher-order 

function that applies a “behavior” on 
elements in a stream

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

Output h(g(f(x)))

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764 

…

The behavior can be a lambda or 
method reference to a Function, 

Predicate, Consumer, Supplier, etc.

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764
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Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• Aggregate operations form a declarative

pipeline that emphasizes the “what” &
deemphasizes the “how”

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

See blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

What

How

Output h(g(f(x)))

…

https://blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8
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Overview of Stream Aggregate Operations

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

• There are two types of aggregate operations …



8

• There are two types of aggregate operations
• Intermediate operations 
• Process elements in their input stream 

& yield an output stream
• e.g., filter(), map(), flatMap(), 

takeWhile(), dropWhile(), etc.

Overview of Stream Aggregate Operations

See geekylearner.com/java-stream-intermediate-operations-learn-by-examples

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

…

https://geekylearner.com/java-stream-intermediate-operations-learn-by-examples/
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• There are two types of aggregate operations
• Intermediate operations 
• Process elements in their input stream 

& yield an output stream
• Intermediate operations can be further

classified via several dimensions

Overview of Stream Aggregate Operations

Run-to-
completion

Shorct-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A
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• There are two types of aggregate operations
• Intermediate operations 
• Process elements in their input stream 

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Store info from a prior 

invocation for use in a 
future invocation

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations

https://stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations/
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• There are two types of aggregate operations
• Intermediate operations 
• Process elements in their input stream 

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Do not store info from any prior

invocations

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See javapapers.com/java/java-stream-api

https://javapapers.com/java/java-stream-api/
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• There are two types of aggregate operations
• Intermediate operations 
• Process elements in their input stream 

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Do not store info from any prior

invocations

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See automationrhapsody.com/java-8-features-stream-api-explained

Stateless operations often require significantly fewer 
processing & memory resources than stateful operations!

https://automationrhapsody.com/java-8-features-stream-api-explained/


13

• There are two types of aggregate operations
• Intermediate operations 
• Process elements in their input stream 

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Run-to-completion
• Process all elements 

in the input stream

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See en.wikipedia.org/wiki/Run_to_completion_scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling
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• There are two types of aggregate operations
• Intermediate operations 
• Process elements in their input stream 

& yield an output stream
• Intermediate operations can be further

classified via several dimensions, e.g.
• Stateful
• Stateless
• Run-to-completion
• Short-circuiting
• Make stream operate 

on a reduced size

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html
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• There are two types of aggregate operations
• Intermediate operations 
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• e.g., forEach(), reduce(), collect(), 

findAny(), etc.

Overview of Stream Aggregate Operations

See www.leveluplunch.com/java/examples/stream-terminal-operations-example

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

A stream must have one (& 
only one) terminal operation

http://www.leveluplunch.com/java/examples/stream-terminal-operations-example
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• There are two types of aggregate operations
• Intermediate operations 
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• Terminal operations can also be

classified via several dimensions

Overview of Stream Aggregate Operations

Operation Type Examples
Run-to-
completion

reduce(), collect(), 
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(), 
findFirst(), 
noneMatch()
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• There are two types of aggregate operations
• Intermediate operations 
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• Terminal operations can also be

classified via several dimensions, e.g.
• Run-to-completion
• Terminate only after processing

all elements in the stream

Overview of Stream Aggregate Operations

Operation Type Examples
Run-to-
completion

reduce(), collect(), 
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(), 
findFirst(), 
noneMatch()
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• There are two types of aggregate operations
• Intermediate operations 
• Terminal operations
• Trigger intermediate operations &

produce a non-stream result
• Terminal operations can also be

classified via several dimensions, e.g.
• Run-to-completion
• Short-circuiting
• May cause a stream to terminate before 

processing all values

Overview of Stream Aggregate Operations

Operation Type Examples
Run-to-
completion

reduce(), collect(), 
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(), 
findFirst(), 
noneMatch()
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Interesting Stream 
Aggregate Operation 

Interactions 
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• Intermediate operations are optional in a
Java stream

Interesting Stream Aggregate Operation Interactions 

Input x

…

long hamletCharacters = Stream
  .of("horatio", "laertes", 
      "Hamlet", ...)
  .count();

Terminal operation (Behavior h)
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• Intermediate operations are optional in a
Java stream
• However, the semantics of the count()

terminal operation may be counter-
intuitive

Interesting Stream Aggregate Operation Interactions 

Input x

…

long hamletCharacters = Stream
  .of("horatio", "laertes", 
      "Hamlet", ...)
  .peek(System.out::print)
  .count();

Terminal operation (Behavior h)

See mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count

As of Java 9 peek() prints nothing when 
combined with count() since the count 

can be computed directly from the source

https://mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count/
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• Intermediate operations are optional in a
Java stream
• However, the semantics of the count()

terminal operation may be counter-
intuitive

Interesting Stream Aggregate Operation Interactions 

Input x

…

long hamletCharacters = Stream
  .of("horatio", "laertes", 
      "Hamlet", ...)
  .filter(x -> !x.isEmpty())
  .count();

Terminal operation (Behavior h)

To force the peek() to run, just appear 
to access some elements with filter()

Output f(x)

Intermediate operation (Behavior f)
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End of Understanding Java 
Streams Aggregate 

Operations


