
Key Factory Method Operators
in the Flowable Class (Part 1)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key operators defined in—or used with—Flowable
• Factory method operators
• These operators create

Flowable streams in
various ways
• e.g., create()

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

3

Key Factory Method
Operators in the
Flowable Class

4

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#create

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

5

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world
• The FlowableOnSubscribe()

subscribe() method receives
an FlowableEmitter instance

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/FlowableOnSubscribe.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/FlowableOnSubscribe.html

6

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world
• The FlowableOnSubscribe()

subscribe() method receives
an FlowableEmitter instance
• FlowableEmitter can emit

events via onNext(), onError(),
& onComplete()

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/FlowableEmitter.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/FlowableEmitter.html

7

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world
• The FlowableOnSubscribe()

subscribe() method receives
an FlowableEmitter instance
• FlowableEmitter can emit

events via onNext(), onError(),
& onComplete()

• Supports more dynamic use cases than the Flowable
& Observable just() & fromIterable() operators

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

See earlier lesson on “Key Factory Method Operators in the Observable Class (Part 1)”

8

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world
• The FlowableOnSubscribe()

subscribe() method receives
an FlowableEmitter instance

• Defines the backpressure mode
• Applied if the downstream

Subscriber doesn't request
(fast) enough

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

9

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world
• The FlowableOnSubscribe()

subscribe() method receives
an FlowableEmitter instance

• Defines the backpressure mode
• Returns a ‘cold’ Flowable
• A cold Flowable emits elements from the

FlowableEmitter for each new Subscriber

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

See medium.com/tompee/rxjava-ninja-hot-and-cold-observables-19b30d6cc2fa

https://medium.com/tompee/rxjava-ninja-hot-and-cold-observables-19b30d6cc2fa

10

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world
• The FlowableOnSubscribe()

subscribe() method receives
an FlowableEmitter instance

• Defines the backpressure mode
• Returns a ‘cold’ Flowable
• A cold Flowable emits elements from the

FlowableEmitter for each new Subscriber
• Subject to the BackpressureStrategy mode

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

See medium.com/tompee/rxjava-ninja-hot-and-cold-observables-19b30d6cc2fa

https://medium.com/tompee/rxjava-ninja-hot-and-cold-observables-19b30d6cc2fa

11

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world
• The FlowableOnSubscribe()

subscribe() method receives
an FlowableEmitter instance

• Defines the backpressure mode
• Returns a ‘cold’ Flowable
• A cold Flowable emits elements from the

FlowableEmitter for each new Subscriber
• A hot Flowable emits elements even if there are no Subscribers

Key Factory Method Operators in the Flowable Class
static <T> Flowable<T> create
 (FlowableOnSubscribe<T> source,
 BackpressureStrategy mode)

12

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

• Elements can be emitted from
one or more threads

Key Factory Method Operators in the Flowable Class
return Flowable
 .create(emitter -> { Flowable
 .range(1, count)
 .subscribe(___ ->
 emitter.onNext(random
 .nextInt(maxValue)),
 emitter::onError,
 emitter::onComplete);
 }))
 ...
 .subscribeOn(scheduler);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

13

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

• Elements can be emitted from
one or more threads

Key Factory Method Operators in the Flowable Class
return Flowable
 .create(emitter -> { Flowable
 .range(1, count)
 .subscribe(___ ->
 emitter.onNext(random
 .nextInt(maxValue)),
 emitter::onError,
 emitter::onComplete);
 }))
 ...
 .subscribeOn(scheduler);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

Rapidly generate
‘count’ events

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

14

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

• Elements can be emitted from
one or more threads

Key Factory Method Operators in the Flowable Class

This emitter uses a
background thread

return Flowable
 .create(emitter -> { Flowable
 .range(1, count)
 .subscribe(___ ->
 emitter.onNext(random
 .nextInt(maxValue)),
 emitter::onError,
 emitter::onComplete);
 }))
 ...
 .subscribeOn(scheduler);

15

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

• Elements can be emitted from
one or more threads

• Project Reactor’s Flux.create()
operator works in a similar way

Key Factory Method Operators in the Flowable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

16

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

• Elements can be emitted from
one or more threads

• Project Reactor’s Flux.create()
operator works in a similar way
• However, it supports backpressure-

aware Publisher(s) & Subscriber(s),
as well as backpressure strategies

Key Factory Method Operators in the Flowable Class

See jstobigdata.com/java/backpressure-in-project-reactor

https://jstobigdata.com/java/backpressure-in-project-reactor

17

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

• Elements can be emitted from
one or more threads

• Project Reactor’s Flux.create()
operator works in a similar way

• Java Streams generate() method
doesn’t support backpressure

Key Factory Method Operators in the Flowable Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

18

• The create() operator
• Bridges the reactive world with

the callback-style, non-back-
pressure-aware world

• Elements can be emitted from
one or more threads

• Project Reactor’s Flux.create()
operator works in a similar way

• Java Streams generate() method
doesn’t support backpressure
• However, it is “pull-based” model rather than “push-based”

pub/sub model, so backpressure support is not necessary

Key Factory Method Operators in the Flowable Class

19

End of Key Factory Method
Operators in the Flowable

Class (Part 1)

