Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the capabilities of
the Flowable class

Class Flowable<T>

java.lang.Object
io.reactivex.rxjava3.core.Flowable<T>

Type Parameters:
T - the type of the items emitted by the Flowable

All Implemented Interfaces:
org.reactivestreams.Publisher<T>

Direct Known Subclasses:
ConnectableFlowable, FlowableProcessor, GroupedFlowable

public abstract class Flowable<T>
extends Object
implements org.reactivestreams.Publisher<T>

The Flowable class that implements the Reactive Streams Publisher Pattern and offers factory methods,
intermediate operators and the ability to consume reactive dataflows.

Reactive Streams operates with Publishers which Flowable extends. Many operators therefore accept
general Publishers directly and allow direct interoperation with other Reactive Streams implementations.

The Flowable hosts the default buffer size of 128 elements for operators, accessible via buf ferSize (), that
can be overridden globally via the system parameter rx3.buffer-size. Most operators, however, have
overloads that allow setting their internal buffer size explicitly.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

Learning Objectives in this Part of the Lesson

« Understand the capabilities of
the Flowable class

« Particularly with respect to
its support for backpressure

Learning Objectives in this Part of the Lesson

« Understand the capabilities of Publisher Subscriber
the Flowable class

« Particularly with respect to
its support for backpressure

« Ensures fast publisher(s) don't
generate events more quickly
than slower subscriber(s) can
process them

request(3)
onNext()
onNext()

onNext()

4

00000
A
Y

See www.baeldung.com/rxjava-backpressure

http://www.baeldung.com/rxjava-backpressure

Overview of the
Flowable Class

Overview of the Flowable Class

 The RxJava Observable class does Class Observable<T>
not support backpressure java.Jang.Object

io.reactivex.rxjava3.core.Observable<T>

Type Parameters:
T - the type of the items emitted by the Observable

Publisher

All Implemented Interfaces:
ObservableSource<T>

Direct Known Subclasses:
ConnectableObservable, GroupedObservable, Subject

public abstract class Observable<T>
extends Object
implements ObservableSource<T>

The Observable class is the non-backpressured, optionally multi-valued base
reactive class that offers factory methods, intermediate operators and the ability to
consume synchronous and/or asynchronous reactive dataflows.

Many operators in the class accept ObservableSource(s), the base reactive interface
for such non-backpressured flows, which Observable itself implements as well.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Overview of the Flowable CIass

* The RxJava Observable class does
not support backpressure

- It can emit a (potentially endless) [_ ,,,///,,,,,,,,,,,,,,,,,
stream of elements at a high rate =i

Overview of the Flowable Class

« The RxJava Observable class does
not support backpressure

« A fast publisher can therefore quickly
overwhelm the memory/processing
resources of a slower consumer

See www.wideo

peneats.com/i-love-lucy-chocolate-factory

https://www.wideopeneats.com/i-love-lucy-chocolate-factory/

Overview of the Flowable Class

« To address this issue the Flowable Class Flowable<T>
class was introduced in RxJava 2.x -

io.reactivex.rxjava3.core.Flowable<T>

Type Parameters:
T - the type of the items emitted by the Flowable

All Implemented Interfaces:
org.reactivestreams.Publisher<T>

Direct Known Subclasses:
ConnectableFlowable, FlowableProcessor, GroupedFlowable

public abstract class Flowable<T>
extends Object
implements org.reactivestreams.Publisher<T>

The Flowable class that implements the Reactive Streams Publisher Pattern
and offers factory methods, intermediate operators and the ability to consume
reactive dataflows.

Reactive Streams operates with Publishers which Flowable extends. Many
operators therefore accept general Publishers directly and allow direct
interoperation with other Reactive Streams implementations.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

Overview of the Flowable Class

« To address this issue the Flowable
class was introduced in RxJava 2.x

» Most of its operators are the same

as the Observable class

4 |
L i
W

1\"\“;;

Class Observable<T>

java.lang.Object
io.reactivex.rxjava3.core.Observable<T>

Type Parameters:
T - the type of the items emitted by the Observable

All Implemented Interfaces:
ObservableSource<T>

Direct Known Subclasses:
ConnectableObservable, GroupedObservable, Subject

public abstract class Observable<T>
extends Object
implements ObservableSource<T>

The Observable class is the non-backpressured, optionally multi-valued base reactive
class that offers factory methods, intermediate operators and the ability to consume
synchronous and/or asynchronous reactive dataflows.

Many operators in the class accept ObservableSource(s), the base reactive interface
for such non-backpressured flows, which Observable itself implements as well.

The Observable's operators, by default, run with a buffer size of 128 elements (see
Flowable.bufferSize()), that can be overridden globally via the system parameter
rx3.buffer-size. Most operators, however, have overloads that allow setting their
internal buffer size explicitly.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

Overview of the Flowable Class

« To address this issue the Flowable
class was introduced in RxJava 2.x

» However, it supports backpressure

we cive LOWETHETONE,

See medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

https://medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

Overview of the Flowable Class

« To address this issue the Flowable Publisher Subscriber
class was introduced in RxJava 2.x

request(3)
onNext()
onNext()

onNext()

Y

« However, it supports backpressure, e.q.

» Backpressure-aware Subscriber(s)
can inform publisher(s) how much
data they can consume

00000
000

See medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

https://medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

Overview of the Flowable Class

« To address this issue the Flowable
class was introduced in RxJava 2.x

« However, it supports backpressure, e.q.

» Backpressure-aware Subscriber(s)
can inform Publisher(s) how much
data they can consume

* i.e., avoid overwhelming memory/
processing resources by ensuring flow
-controlled Publisher(s) don't generate
events faster than Subscriber(s) can
consume them

See www.baeldung.com/rxjava-backpressure

http://www.baeldung.com/rxjava-backpressure

Overview of the Flowable Class

* TO address this issue the Flowable public enum BackpressureStrategy
class was introduced in RxJava 2.x ki

Represents the options for applying backpressure to a source sequence.

Enum Constant Summary

Enum Constants
d H Oweve r, it SU ppo rtS baCkprSSUfe, e . g . Enum Constant and Description

BUFFER

Buffers all onNext values until the downstream consumes it.

DROP

Drops the most recent onNext value if the downstream can't keep up.

ERROR

Signals a MissingBackpressureException in case the downstream can't

» Non-backpressure-aware Subscriber(s) | «ew.
can apply a strategy if they can't e

Keeps only the latest onNext value, overwriting any previous value if the

keep up with faster Publisher(s) downstream can't keep up.

MISSING

The onNext events are written without any buffering or dropping.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

Overview of the Flowable Class

« To address this issue the Flowable
class was introduced in RxJava 2.x

« However, it supports backpressure, e.q.

» Non-backpressure-aware Subscriber(s)
can apply a strategy if they can’t

keep up with faster Publisher(s)
* i.e., hon-flow-controlled Publisher(s)

15

Overview of Back
pressure Strategies

16

Overview of Backpressure Strategies
 Backpressure strategies say how to public enun Backprossurestratesy

extends Enum<BackpressureStrategy>

h a n d Ie e m itted ite m s th at Ca n "lE be Represents the options for applying backpressure to a source sequence.
processed as fast as they're received

Enum Constant Summary

Enum Constants
Enum Constant and Description

BUFFER
Buffers all onNext values until the downstream consumes it.

DROP
Drops the most recent onNext value if the downstream can't keep up.

ERROR
Signals a MissingBackpressureException in case the downstream can't
keep up.

LATEST
Keeps only the latest onNext value, overwriting any previous value if the
downstream can't keep up.

MISSING
The onNext events are written without any buffering or dropping.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

Overview of Backpressure Strategies

 Backpressure strategies say how to |
handle emitted items that can’t be O

@BackpressureSupport (value=SPECIAL)

I/ . d e
processed as faSt aS they re recelve piii?idziziizpsgzt((%;:i;illn;z:w;blzx’lb create(@NonNull FlowableOnSubscribe<T> source

@NonNull BackpressureStrategy mode)

® T h ese St ra teg i es Ca n b e p rOVi d ed Provides an API (via a cold Flowable) that bridges the reactive world with the callback-style, generally non-

backpressured world.

via the Flowable.create() operator | s

Flowable.<Event>create(emitter -> {
Callback listener = new Callback() {

@override
public void onEvent(Event e) {
emitter.onNext(e);
if (e.isLast()) {
emitter.onComplete();
}
}

@override
public void onFailure(Exception e) {
emitter.onError(e);
}
Yi

AutoCloseable ¢ = api.someMethod(listener);

emitter.setCancellable(c::close);

}, BackpressureStrategy.BUFFER);

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#create

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

Overview of Backpressure Strategies
» Backpressure strategies say how to = Flowable.create

handle emitted items that can't be (emitter -> { Flowable
processed as fast as they're received . range (} , count)
» These strategies can be provided 'suzzci:ife)i fmexz (random
via the Flowable.create() operator _nextInt (max)),
« Specify the backpressure mode to emitter: :onError,
apply if the Subscriber can't keep emitter::onComplete)
up with the Publisher Iy

BackpressureStrategy.DROP)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

Overview of Backpressure Strategies
» Backpressure strategies say how to Flowable.create

handle emitted items that can’t be (emitter -> { Flowable
processed as fast as they're received = a;ge (}Ir) iount)

.] .Subscribpbe ->
» These strategies can be provided emitter.onNext (random

via the Flowable.create() operator

« Specify the backpressure mode to
apply if the Subscriber can't keep
up with the Publisher

.nextInt (max)),
emitter: :onError,
emitter: :onComplete)

b

BackpressureStrategy.DROP)

Rapidly emit a stream of random
Integer objects in one fell swoop

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

Overview of Backpressure Strategies
» Backpressure strategies say how to = Flowable.create

handle emitted items that can't be (emitter -> { Flowable
processed as fast as they're received . range (} , count)
» These strategies can be provided 'suzzci:ife)i fmexz (random
via the Flowable.create() operator _nextInt (max)),
« Specify the backpressure mode to emitter: :onError,
apply if the Subscriber can't keep emitter::onComplete)
up with the Publisher Iy

BackpressureStrategy.DROP)

Ignore all streamed items that
can't be processed immediately

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

Overview of Backpressure Strategies

« Backpressure strategies say how to
handllae emitted itemgs that Zan’t be ‘ create { onNext((g); onNext(g); onComplete \

processed as fast as they're received \ V V v
- These strategies can be provided \ QD . =~

via the Flowable.create() operator

Observerable.create() does
not support backpressure

« This operator is different than
Observable.create()

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.ntml#create

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Overview of Backpressure Strategies

» Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they're received

« They can also be provided via
various Flowable operators

Introduction

Backpressure is when in an Flowable processing pipeline, some
asynchronous stages can't process the values fast enough and need a way to
tell the upstream producer to slow down.

The classic case of the need for backpressure is when the producer is a hot
source:

PublishProcessor<Integer> source = PublishProcessor.create();

source
.observeOn(Schedulers.computation())
.subscribe(v —> compute(v), Throwable::printStackTrace);

for (int i = 0; i < 1_000_000; i++) {
source.onNext(i);

I

Thread.sleep(10_000);

In this example, the main thread will produce 1 million items to an end
consumer which is processing it on a background thread. It is likely the
compute(int) method takes some time but the overhead of the Flowable
operator chain may also add to the time it takes to process items. However,
the producing thread with the for loop can't know this and keeps onNext ing.

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

Overview of Backpressure Strategies

« Backpressure strategies say how to ~ component
handle emitted items that can't be -mouseMoves ()

processed as fast as they're received -onBackpressureDrop ()
.observeOn

(Schedulers.computation(),
1)
.subscribe (event ->
compute (event.x,
event.y));

« They can also be provided via
various Flowable operators

« onBackpressureDrop()

« Ignore all streamed items that
can’t be processed until down
stream can accept more of them

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)#onbackpressuredrop

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

Overview of Backpressure Strategies

« Backpressure strategies say how to Flowable
handle emitted items that can't be .range (1, 1_000_000)

processed as fast as they’re received '°m?i“63kpr essureBuffer

() -> { } ’
BufferOverflowStrategy
. ON_OVERFLOW_DROP_OLDEST)
.O0bserveOn
(Schedulers.computation())

« They can also be provided via
various Flowable operators

« onBackpressureBuffer() _subscribe (e -> { },
* Creates a bounded or unbounded Th{rowable: :
buffer that holds the emitted printStackTrace) ;

items that couldn’t be processed
by the downstream

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)#onbackpressurebuffer

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

Overview of Backpressure Strategies

- Backpressure strategies say how to ~ Component
handle emitted items that can't be -mouseClicks ()

processed as fast as they’re received .onBackpressureLatest ()
.ObserveOn

(Schedulers.computation())
.subscribe (event ->

« They can also be provided via compute (event.x,
event.y),

various Flowable operators
Throwable: :
« onBackpressurelLatest() printStackTrace) ;

 Like the DROP strategy, but it
keeps the last emitted item

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)#onbackpressurelatest

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

End of Overview of
the Flowable Class

27

