
Overview of the Flowable Class

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the Flowable class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

3

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the Flowable class
• Particularly with respect to

its support for backpressure

4

Learning Objectives in this Part of the Lesson
• Understand the capabilities of

the Flowable class
• Particularly with respect to

its support for backpressure
• Ensures fast publisher(s) don’t

generate events more quickly
than slower subscriber(s) can
process them

See www.baeldung.com/rxjava-backpressure

http://www.baeldung.com/rxjava-backpressure

5

Overview of the
Flowable Class

6

• The RxJava Observable class does
not support backpressure

Overview of the Flowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

7

• The RxJava Observable class does
not support backpressure
• It can emit a (potentially endless)

stream of elements at a high rate

Overview of the Flowable Class

8

• The RxJava Observable class does
not support backpressure
• It can emit a (potentially endless)

stream of elements at a high rate
• A fast publisher can therefore quickly

overwhelm the memory/processing
resources of a slower consumer

Overview of the Flowable Class

See www.wideopeneats.com/i-love-lucy-chocolate-factory

https://www.wideopeneats.com/i-love-lucy-chocolate-factory/

9

• To address this issue the Flowable
class was introduced in RxJava 2.x

Overview of the Flowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

10

• To address this issue the Flowable
class was introduced in RxJava 2.x
• Most of its operators are the same

as the Observable class

Overview of the Flowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

11

• To address this issue the Flowable
class was introduced in RxJava 2.x
• Most of its operators are the same

as the Observable class
• However, it supports backpressure

Overview of the Flowable Class

See medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

https://medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

12

• To address this issue the Flowable
class was introduced in RxJava 2.x
• Most of its operators are the same

as the Observable class
• However, it supports backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform publisher(s) how much
data they can consume

Overview of the Flowable Class

See medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

https://medium.com/android-news/rxjava-flowables-what-when-and-how-to-use-it-9f674eb3ecb5

13

• To address this issue the Flowable
class was introduced in RxJava 2.x
• Most of its operators are the same

as the Observable class
• However, it supports backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform Publisher(s) how much
data they can consume
• i.e., avoid overwhelming memory/

processing resources by ensuring flow
-controlled Publisher(s) don’t generate
events faster than Subscriber(s) can
consume them

Overview of the Flowable Class

See www.baeldung.com/rxjava-backpressure

http://www.baeldung.com/rxjava-backpressure

14

• To address this issue the Flowable
class was introduced in RxJava 2.x
• Most of its operators are the same

as the Observable class
• However, it supports backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform Publisher(s) how much
data they can consume

• Non-backpressure-aware Subscriber(s)
can apply a strategy if they can’t
keep up with faster Publisher(s)

Overview of the Flowable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

15

• To address this issue the Flowable
class was introduced in RxJava 2.x
• Most of its operators are the same

as the Observable class
• However, it supports backpressure, e.g.
• Backpressure-aware Subscriber(s)

can inform Publisher(s) how much
data they can consume

• Non-backpressure-aware Subscriber(s)
can apply a strategy if they can’t
keep up with faster Publisher(s)
• i.e., non-flow-controlled Publisher(s)

Overview of the Flowable Class

16

Overview of Back
pressure Strategies

17

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received

Overview of Backpressure Strategies

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/BackpressureStrategy.html

18

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator

Overview of Backpressure Strategies

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#create

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

19

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• Specify the backpressure mode to

apply if the Subscriber can’t keep
up with the Publisher

Overview of Backpressure Strategies

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

Flowable.create
 (emitter -> { Flowable
 .range(1, count)
 .subscribe(___ ->
 emitter.onNext(random
 .nextInt(max)),
 emitter::onError,
 emitter::onComplete)
 },

 BackpressureStrategy.DROP)

 ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

20

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• Specify the backpressure mode to

apply if the Subscriber can’t keep
up with the Publisher

Overview of Backpressure Strategies

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

Flowable.create
 (emitter -> { Flowable
 .range(1, count)
 .subscribe(___ ->
 emitter.onNext(random
 .nextInt(max)),
 emitter::onError,
 emitter::onComplete)
 },

 BackpressureStrategy.DROP)

 ...
Rapidly emit a stream of random
Integer objects in one fell swoop

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

21

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• Specify the backpressure mode to

apply if the Subscriber can’t keep
up with the Publisher

Overview of Backpressure Strategies

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

Flowable.create
 (emitter -> { Flowable
 .range(1, count)
 .subscribe(___ ->
 emitter.onNext(random
 .nextInt(max)),
 emitter::onError,
 emitter::onComplete)
 },

 BackpressureStrategy.DROP)

 ...Ignore all streamed items that
can’t be processed immediately

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable/ex1

22

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• Specify the backpressure mode to

apply if the Subscriber can’t keep
up with the Publisher

• This operator is different than
Observable.create()

Overview of Backpressure Strategies

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#create

Observerable.create() does
not support backpressure

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

23

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• They can also be provided via

various Flowable operators

Overview of Backpressure Strategies

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

24

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• They can also be provided via

various Flowable operators
• onBackpressureDrop()
• Ignore all streamed items that

can’t be processed until down
stream can accept more of them

Overview of Backpressure Strategies

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)#onbackpressuredrop

component
 .mouseMoves()
 .onBackpressureDrop()
 .observeOn
 (Schedulers.computation(),
 1)
 .subscribe(event ->
 compute(event.x,
 event.y));

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

25

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• They can also be provided via

various Flowable operators
• onBackpressureBuffer()
• Creates a bounded or unbounded

buffer that holds the emitted
items that couldn’t be processed
by the downstream

Overview of Backpressure Strategies

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)#onbackpressurebuffer

Flowable
 .range(1, 1_000_000)
 .onBackpressureBuffer
 (16,
 () -> { },
 BufferOverflowStrategy
 .ON_OVERFLOW_DROP_OLDEST)
 .observeOn
 (Schedulers.computation())
 .subscribe(e -> { },
 Throwable::
 printStackTrace);

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

26

• Backpressure strategies say how to
handle emitted items that can’t be
processed as fast as they’re received
• These strategies can be provided

via the Flowable.create() operator
• They can also be provided via

various Flowable operators
• onBackpressureLatest()
• Like the DROP strategy, but it

keeps the last emitted item

Overview of Backpressure Strategies

See github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)#onbackpressurelatest

Component
 .mouseClicks()
 .onBackpressureLatest()
 .observeOn
 (Schedulers.computation())
 .subscribe(event ->
 compute(event.x,
 event.y),
 Throwable::
 printStackTrace);

https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

27

End of Overview of
the Flowable Class

