Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

jve Progra .
eact s

—

« Recognize how reactive programming
compares with other Java paradigms

* e.g., OO programming (including _|_
structured concurrency), & sync/
async functional programming

Reactive Streams
(& Streams +
CompletableFutures)

Streams

Multiple
values

Completable

Objects Futures

Single
value

>

Synchronous Asynchronous

Learning Objectives in this Part of the Lesson

EE@E@E@E@E’-‘U@E@EE

- Be aware of the pros & cons of reactive —- ?f
streams platforms vs. alternatives ‘) [o
_ v
\

Comparing Reactive
Programming with
Other Paradigms

4

Comparing Reactive Programming with Other Paradigms

Reactive programming is one of several Java programming paradigms
: ro

a

L) e @
o v .
B 3 Streams Reactive Streams
33 (& Streams +

= CompletableFutures)
()

- ; Completable

-g ‘_;’ Objects Futures

7))

Asynchronous

Synchronous

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

~
byte[] downloadContent (URL url) {

byte[] buf = new byte[BUFSIZ];

Streams —
ByteArrayOutputStream os =

new ByteArrayOutputStream() ;

InputStream is = url.openStream() ;

Aﬁiiii for (int bytes;
(bytes = is.read(buf)) > 0;)

Objects ! os.write(buf, 0, bytes); .)

Multiple
values

Single
value

Asynchronous

Synchronous

Java virtual threads & structured concurrency are making synchronous programming cool again!

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

@ e

E—é Streams List<Image> imgs = getInput ()

3 S .parallelStream ()

= i .filter (not (this: :urlCached))
.map (this: :downloadImage)
.flatMap (this: :applyFilters)
. tolList();

2 " \(J

23 Objects

N >

Asynchronous

Synchronous

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

ive Progray,,, .
9w /¢ %
o d .
w21 Y Reactive Streams
S © CompletableFuture (& Streams +
= . supplyAsync (reduce) CompletableFutures)

. thenApply
(BigFraction
: :toMixedString)
0 o .thenAccept
o3 (System.out: :println) ; Completable
=S . J Futures

Asynchronous

Synchronous

See www.baeldung.com/java-completablefuture

http://www.baeldung.com/java-completablefuture

Comparing Reactive Programming with Other Paradigms
« Reactive programming is one of several Java programming paradigms

cve Progray,,, .
9 gy v.eactlve = R
-E' 3 Reactive Streams
ERY 4 (& Streams +
= List<Image> imgs = getInput() | CompletableFutures)
.stream/()
.map (checkUrlCachedAsync)
.map (downloadImageAsync)
] .flatMap (applyFiltersAsync)
E“—su .collect (toFuture()) Co?ﬂ:::l:)le
» > . thenApply (lLogResults)
.join(); ...
. _ J Asynchronous

See www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa

http://www.linkedin.com/pulse/streams-completablefutures-java-8-gustavo-sousa

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

ve Progray,,. .
9 gy v.eactlve = R
-%3 < Reactive Streams
3 S| List<Image> imgs = Observable[~ (& Streams +
= .fromIterable (Options. CompletableFutures)
instance () .getUrlList())

.parallel (parallelism)

.runOn (scheduler)
% g .r::p(do:{lliadAndStoreImage) Completable
s 6 -sequentia ()_ Futures
(7] .collect (toList())

| .blockingGet () ; ‘ ;

Asynchronous

Synchronous

See www.baeldung.com/rx-java

http://www.baeldung.com/rx-java

Pros & Cons of Java
Reactive Streams Platforms

12

Pros & Cons of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles Responsive
to achieve several benefits

Message-
driven

13

Pros & Cons of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
« Minimal resource utilization

« Support concurrency with a
minimal number of threads
via a range of thread pools

Name

Schedulers.computation()

Schedulers.immed iate()

Schedulers.iof)

Schedulers.trampoline()

Schedulers.newThread()

Schedulers.test()

Schedulers.from(Executor e)

Description

Schedules computation bound work
(ScheduledExecutorSenice with pool size = NCPU, LRU
worker select strategy)

Schedules work on current thread

/O bound work (ScheduledExecutorService with growing
thread pool)

Queues work on the current thread
Creates new thread for every unit of work
Schedules work on scheduler supporting virtual time

Schedules work to be executed on provided executor

14

Pros & Cons of Java Reactive Streams Platforms

» Java reactive streams implementations (500ms backend service)
apply reactive programming principles #°®
to achieve several benefits 3200

3000
o Minimal resource utilization

== Synchronous
- Reactive

rriliseconds {35th percentile)

1500
via a range of thread pools e /
0

2500
« Support concurrency with a 2
minimal number of threads 1000
500

. Scale_ up performance with 1 10 100 200 500 1000 2000

relatively few resources Concurrent users

See dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros & Cons of Java Reactive Streams Platforms
 Java reactive streams implementations
apply reactive programming principles
to achieve several benefits

» Hides concurrent programming

 Explicit synchronization and/or
threading is rarely needed when
applying these frameworks

Alleviates many accidental & inherent complexities of concurrency/parallelism

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros & Cons of Java Reactive Streams Platforms

 Java reactive streams implementations Parallel streams Completable Futures
apply reactive programming principles "'*éI'E;;E“'=E|"“= s)
to achieve several benefits e / \,4
L o - it i i 14 26 .
» Minimal resource utilization) e b

i m ! (countImages (page)) (crawlHyperLinks
[H " 1 .thenApply (List: :size) (page))

* Hides concurrent programming T

{} ii ii ; & ‘X f/lze

1
1) 1 /imgNum)\ . thenCombine (/imgNum) ,
:l collect(tolList()) L (imgNum, imgNum) ->
------------------------ Integer: :sum)

/ *\ N —
These benefits are not 9000000 I

i _ /*\ TT E e /*\ map({ O-- >0 1)
unigue to reactive gkl 5 PEAE T TN
streams, however!! \)*(/ S
00 8a00l-
Structured oy Reactive
Concurrency - Streams

17

Pros & Cons of Java Reactive Streams Platforms

jve Progra,)
eact e,

 Java reactive streams implementations 4
apply reactive programming principles :
to achieve several benefits —|—

Reactive Streams
(& Streams +
CompletableFutures)

Streams

Multiple
values

Completable

Objects Futures

Single
value

>

« Seamlessly integrates paradigms
 Integrates concurrency & asynchrony
more seamlessly than other Java
programming paradigms

Synchronous Asynchronous

18

Pros & Cons of Java Reactive Streams Platforms

 Java reactive streams implementations List<Image> imgs = Observable
apply reactive programming principles .fromIterable (Options.

to achieve several benefits instance () .getUrlList())
.parallel (parallelism)

.runOn (scheduler)
.map (downloadAndStoreImage)

.) . .sequential ()
Seamlessly integrates paradigms _collect (toList())

- Integrates concurrency & asynchrony pilockingGet() ;
more seamlessly than other Java
programming paradigms

* e.g., concurrent/asynchronous
programming looks much like
synchronous programming

19

Pros & Cons of Java Reactive Streams Platforms

« However, reactive programming
isn't appropriate in all situations

ONE SIZE
DOES NOT

FIT ALL

20

Pros & Cons of Java Reactive Streams Platforms

« However, reactive programming | s«

isn't appropriate in all situations

« Complexity

» Most Java developers are
familiar with imperative
OO programming

* There is a learning
curve associated with
introducing a reactive

style

4X

3X

2X

1X

Total (traditional)

Total (reactive)

0X
small startup

Total Ownership Cost

System Scale & Complexity

See www.youtube.com/watch?v=z0a0ON90gaAA

http://www.youtube.com/watch?v=z0a0N9OgaAA

Pros & Cons of Java Reactive Streams Platforms

* However, reactive programming

isn't appropriate in all situations IIIIII'T NEED "' IIEBIIG BIIIIE
« Debugging

.

f J

« Can be harder due to -
asynchronous operations Y 4
& lack of meaningful ’
stack traces

IFYOU DON'T WRITE BUGS

See www.baeldung.com/spring-debugging-reactive-streams

http://www.baeldung.com/spring-debugging-reactive-streams

Pros & Cons of Java Reactive Streams Platforms

« However, reactive programming
isn’t appropriate in all situations

Productivity

Performance

Its essential to master the
reactive programming learning
curve to use it effectively!

See reactive-programming-project-reactor-webflux-oh-my-4bfa470feee’/

https://medium.com/intuit-engineering/reactive-programming-project-reactor-webflux-oh-my-4bfa470feee7

Pros & Cons of Java Reactive Streams PIatforms

» There are various perspectives
on reactive microservices vs.
micro-services based on Java

structured concurrency! L, el L
reactive programming in Java

going forward?

”1 think [Project] Loom is going
to kill reactive programming.”
- Brian Goetz

See www.youtube.com/watch?v=9si7gK94glLo&t=1153s

http://www.youtube.com/watch?v=9si7gK94gLo&t=1153s

End of Evaluating Java
Programming Paradigms

25

