Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Learn how Java reactive streams |)
maps to key reactive programming
Elastic Resilient

principles
Message-
driven

Mapping Reactive
Streams to Reactive
Programming Principles

3

Mapping Reactive Streams to Reactive Programming Principles

» Mapping reactive programming principles onto reactive streams features

Responsive

Message-
driven

See www.baeldung.com/rx-java,

projectreactor.io, & www.reactivemanifesto.orc_ﬂ

http://www.baeldung.com/rx-java
https://projectreactor.io/
http://www.reactivemanifesto.org/

Mapping Reactive Streams to Reactive Programming Principles

« Mapping reactive programming principles onto reactive streams features, e.g.
« Responsive

Responsive

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness

Mapping Reactive Streams to Reactive Programming Principles

« Mapping reactive programming principles onto reactive streams features, e.g.
- Responsive CALLER CALLEE

« Avoid blocking caller code 1 searchForWord; !
» Blocking underutilizes cores, impedes | return result; ___
inherent parallelism, & complicates i :
program structure i searchForWord, = '
! return result,
| e e e e e e
i searchForWord; :
i return returns U
! G = e - - - -

See www.nhastel.com/10-reasons-your-java-apps-are-slow

http://www.nastel.com/10-reasons-your-java-apps-are-slow

Mapping Reactive Streams to Reactive Programming Principles

« Mapping reactive programming principles onto reactive streams features, e.g.
. Responsive Represent anything

 Avoid blocking caller code

« Blocking underutilizes cores, impedes
inherent parallelism, & complicates that can be created on any thread

program structure functionally ___transformed

and consumed

as a data _stream

Operators like subscribeOn(),

publishOn(), & observeOn() can be
used to avoid blocking caller code

on any thread.

See spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers

https://spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers

Mapping Reactive Streams to Reactive Programming Principles
« Mapping reactive programming principles onto reggh 3¢ features, e.qg.
- Responsive y

 Avoid changing threads

« Incurs excessive overhead
wrt synchronization, context
switching, & memory/cache
management

See gee.cs.oswego.edu/dl/papers/fij.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Mapping Reactive Streams to Reactive Programming Principles
« Mapping reactive programming principles onto reactive streams features, e.g.

- Responsive — 000
|

4 Y Y Y y
)

subscribeOn(

» Avoid changing threads ;
b4 Y I "

e Incurs excessive overhead i

wrt synchronization, context
switching, & memory/cache /

management : :
Operators like subscribeOn(), publishOn(), : ,,.,.,..s..o..'(.') '
& observeOn() provide fine-grained W e
control over mapping events to threads 000 |

See zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor

https://zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor/

Mapping Reactive Streams to Reactive Programming Principles

« Mapping reactive programming principles onto reactive streams features, e.g.
* Resilient

Responsive

Resilient

See en.wikipedia.org/wiki/Resilience (network)

https://en.wikipedia.org/wiki/Resilience_(network)

Mapping Reactive Streams to Reactive Programming Principles
« Mapping reactive programming principles onto reactive streams features, e.g.
* Resilient

» Exception methods make more
programs resilient to failures

L

o 8 i IS I e o
J (o}

I Wi I TiElWATRE Y

w

Exception handling operators ,5,7/ \ \
| —

decouple error processing
from normal operations

Reactive streams are localized to a single process, nota cluster!

Mapping Reactive Streams to Reactive Programming Principles

« Mapping reactive programming principles onto reactive streams features, e.g.
« Elastic

Responsive

Message-
driven

See en.wiki Jedia.org/wiki/AutoscaIinc_:ﬂ

https://en.wikipedia.org/wiki/Autoscaling

Mapping Reactive Streams to Reactive Programming Principles
« Mapping reactive programming principles onto reactive streams features, e.g.
¢ ElaStiC Name Description |

» Async computations can run
scalably in a pool of threads
atop a set of cores

Schedules computation bound work
Schedulers.computation() (ScheduledExecutorService with pool size = NCPU, LRU
worker select strategy)

Schedulers.immediate() Schedules work on current thread

schedulers.io() /O bound work (ScheduledExecutorService with growing

thread pool)
Schedulers.trampoline() Queues work on the current thread
Schedulers.newThread() Creates new thread for every unit of work
Schedulers.test() Schedules work on scheduler supporting virtual time
Schedulers.from{Executor e) Schedules work to be executed on provided executor

RxJava scheaulers support many
types of threads and/or thread pools

See www.baeldung.com/rxjava-schedulers

http://www.baeldung.com/rxjava-schedulers

Mapping Reactive Streams to Reactive Programming Principles

« Mapping reactive programming principles onto reactive streams features, e.g.

« Elastic

» Async computations can run
scalably in a pool of threads
atop a set of cores

Project Reactor’s schedulers also
support threads andy/or thread pools

Reactor, like RxJava, can be considered to be concurrency-agnostic. That is,
it does not enforce a concurrency model. Rather, it leaves you, the developer, in
command. However, that does not prevent the library from helping you with

concurrency.

Obtaining a Flux or a Mono does not necessarily mean that it runs in a
dedicated Thread. Instead, most operators continue working in the Thread on
which the previous operator executed. Unless specified, the topmost operator
(the source) itself runs on the Thread in which the subscribe() call was made.

The following example runs a Mono in a new thread:

main(String[] args) InterruptedException {
Mono<String> mono = Mono.just("hello ");

Thread t = Thread(() -> mono
.map(msg -> msg + "thread "

.subscribe(v ->
System.out.println(v + Thread.currentThread().getName()) .
)

%.star‘t();
t.join();

}

See projectreactor.io/docs/core/release/reference/#schedulers

https://projectreactor.io/docs/core/release/reference/

Mapping Reactive Streams to Reactive Programming Principles

« Mapping reactive programming principles onto reactive streams features, e.g.
« Message-driven

Responsive

| See en.wikipedia.org/wiki/Message-oriented middleware

https://en.wikipedia.org/wiki/Message-oriented_middleware

Mapping Reactive Streams to Reactive Programming Principles
« Mapping reactive programming principles onto reactive streams features, e.g.

+ Message-driven Deque Deque Deque
« Implementations of reactive —\
streams & Java-based thread Sub-Task ,
pools pass messages internally Sub-Task ; Sub-Tasks ;

Sub-Tas k1 4 Su b'TaSk3.4

e.qg., Java’s fork-join pool supports L
"work-stealing” between deques

See en.wikipedia.org/wiki/Work stealing

https://en.wikipedia.org/wiki/Work_stealing

End of Mapping Java Reactive
Streams onto Reactive
Programming Principles

17

