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Responsive

Resilient

Message-
driven

Elastic

Learning Objectives in this Part of the Lesson
• Understand the key benefits & principles 

underlying the reactive programming paradigm
• Know the Java reactive streams API & 

popular implementations of this API
• Learn how Java reactive streams 

maps to key reactive programming 
principles
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Mapping Reactive 
Streams to Reactive 

Programming Principles
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• Mapping reactive programming principles onto reactive streams features
Mapping Reactive Streams to Reactive Programming Principles

See www.baeldung.com/rx-java, projectreactor.io, & www.reactivemanifesto.org

http://www.baeldung.com/rx-java
https://projectreactor.io/
http://www.reactivemanifesto.org/
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness


6See www.nastel.com/10-reasons-your-java-apps-are-slow 

• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Blocking underutilizes cores, impedes 

inherent parallelism, & complicates 
program structure

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

Mapping Reactive Streams to Reactive Programming Principles

http://www.nastel.com/10-reasons-your-java-apps-are-slow
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Blocking underutilizes cores, impedes 

inherent parallelism, & complicates 
program structure

Mapping Reactive Streams to Reactive Programming Principles

Operators like subscribeOn(), 
publishOn(), & observeOn() can be 
used to avoid blocking caller code

See spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers

https://spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Avoid changing threads
• Incurs excessive overhead 

wrt synchronization, context 
switching, & memory/cache 
management 

See gee.cs.oswego.edu/dl/papers/fj.pdf  

Mapping Reactive Streams to Reactive Programming Principles

http://gee.cs.oswego.edu/dl/papers/fj.pdf
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Avoid changing threads
• Incurs excessive overhead 

wrt synchronization, context 
switching, & memory/cache 
management 

See zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor

Mapping Reactive Streams to Reactive Programming Principles

Operators like subscribeOn(), publishOn(), 
& observeOn() provide fine-grained 

control over mapping events to threads

https://zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor/
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Resilient

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Resilience_(network)

https://en.wikipedia.org/wiki/Resilience_(network)
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Resilient
• Exception methods make more

programs resilient to failures

Mapping Reactive Streams to Reactive Programming Principles

Reactive streams are localized to a single process, not a cluster!

Exception handling operators 
decouple error processing 
from normal operations
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Elastic

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Autoscaling
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Elastic
• Async computations can run 

scalably in a pool of threads
atop a set of cores

Mapping Reactive Streams to Reactive Programming Principles

RxJava schedulers support many 
types of threads and/or thread pools

See www.baeldung.com/rxjava-schedulers

http://www.baeldung.com/rxjava-schedulers
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Elastic
• Async computations can run 

scalably in a pool of threads
atop a set of cores

Mapping Reactive Streams to Reactive Programming Principles

Project Reactor’s schedulers also 
support threads and/or thread pools

See projectreactor.io/docs/core/release/reference/#schedulers 

https://projectreactor.io/docs/core/release/reference/
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Message-driven

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Message-oriented_middleware
 

https://en.wikipedia.org/wiki/Message-oriented_middleware
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• Mapping reactive programming principles onto reactive streams features, e.g.
• Message-driven
• Implementations of reactive 

streams & Java-based thread 
pools pass messages internally

Mapping Reactive Streams to Reactive Programming Principles

e.g., Java’s fork-join pool supports 
“work-stealing” between deques

See en.wikipedia.org/wiki/Work_stealing  

Sub-Task1.2

Sub-Task1.3

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

Deque Deque

Sub-Task1.4

Deque

https://en.wikipedia.org/wiki/Work_stealing
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End of Mapping Java Reactive 
Streams onto Reactive 
Programming Principles 


