
Mapping Java Reactive Streams Onto
Reactive Programming Principles

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Responsive

Resilient

Message-
driven

Elastic

Learning Objectives in this Part of the Lesson
• Understand the key benefits & principles

underlying the reactive programming paradigm
• Know the Java reactive streams API &

popular implementations of this API
• Learn how Java reactive streams

maps to key reactive programming
principles

3

Mapping Reactive
Streams to Reactive

Programming Principles

4

• Mapping reactive programming principles onto reactive streams features
Mapping Reactive Streams to Reactive Programming Principles

See www.baeldung.com/rx-java, projectreactor.io, & www.reactivemanifesto.org

http://www.baeldung.com/rx-java
https://projectreactor.io/
http://www.reactivemanifesto.org/

5

• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness

6See www.nastel.com/10-reasons-your-java-apps-are-slow

• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Blocking underutilizes cores, impedes

inherent parallelism, & complicates
program structure

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

Mapping Reactive Streams to Reactive Programming Principles

http://www.nastel.com/10-reasons-your-java-apps-are-slow

7

• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Blocking underutilizes cores, impedes

inherent parallelism, & complicates
program structure

Mapping Reactive Streams to Reactive Programming Principles

Operators like subscribeOn(),
publishOn(), & observeOn() can be
used to avoid blocking caller code

See spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers

https://spring.io/blog/2019/12/13/flight-of-the-flux-3-hopping-threads-and-schedulers

8

• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Avoid changing threads
• Incurs excessive overhead

wrt synchronization, context
switching, & memory/cache
management

See gee.cs.oswego.edu/dl/papers/fj.pdf

Mapping Reactive Streams to Reactive Programming Principles

http://gee.cs.oswego.edu/dl/papers/fj.pdf

9

• Mapping reactive programming principles onto reactive streams features, e.g.
• Responsive
• Avoid blocking caller code
• Avoid changing threads
• Incurs excessive overhead

wrt synchronization, context
switching, & memory/cache
management

See zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor

Mapping Reactive Streams to Reactive Programming Principles

Operators like subscribeOn(), publishOn(),
& observeOn() provide fine-grained

control over mapping events to threads

https://zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor/

10

• Mapping reactive programming principles onto reactive streams features, e.g.
• Resilient

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Resilience_(network)

https://en.wikipedia.org/wiki/Resilience_(network)

11

• Mapping reactive programming principles onto reactive streams features, e.g.
• Resilient
• Exception methods make more

programs resilient to failures

Mapping Reactive Streams to Reactive Programming Principles

Reactive streams are localized to a single process, not a cluster!

Exception handling operators
decouple error processing
from normal operations

12

• Mapping reactive programming principles onto reactive streams features, e.g.
• Elastic

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Autoscaling

13

• Mapping reactive programming principles onto reactive streams features, e.g.
• Elastic
• Async computations can run

scalably in a pool of threads
atop a set of cores

Mapping Reactive Streams to Reactive Programming Principles

RxJava schedulers support many
types of threads and/or thread pools

See www.baeldung.com/rxjava-schedulers

http://www.baeldung.com/rxjava-schedulers

14

• Mapping reactive programming principles onto reactive streams features, e.g.
• Elastic
• Async computations can run

scalably in a pool of threads
atop a set of cores

Mapping Reactive Streams to Reactive Programming Principles

Project Reactor’s schedulers also
support threads and/or thread pools

See projectreactor.io/docs/core/release/reference/#schedulers

https://projectreactor.io/docs/core/release/reference/

15

• Mapping reactive programming principles onto reactive streams features, e.g.
• Message-driven

Mapping Reactive Streams to Reactive Programming Principles

See en.wikipedia.org/wiki/Message-oriented_middleware

https://en.wikipedia.org/wiki/Message-oriented_middleware

16

• Mapping reactive programming principles onto reactive streams features, e.g.
• Message-driven
• Implementations of reactive

streams & Java-based thread
pools pass messages internally

Mapping Reactive Streams to Reactive Programming Principles

e.g., Java’s fork-join pool supports
“work-stealing” between deques

See en.wikipedia.org/wiki/Work_stealing

Sub-Task1.2

Sub-Task1.3

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

Deque Deque

Sub-Task1.4

Deque

https://en.wikipedia.org/wiki/Work_stealing

17

End of Mapping Java Reactive
Streams onto Reactive
Programming Principles

