Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

¢ = Flow
« Know the Java reactive streams API f dDEfFA:;Tf_fBuSEFEg_SIZE fn:)
T
((5 =\

I Subscriber<T>

m) = onSubscribe(Subscription) void
m) % onError(Throwable) void
m) = onComplete() void
m) = onNext(T) void

@
I Publisher<T>

m subscribe(Subscriber<T>) void

]

I
4 request(long) void Processor<T, R>

cancel() void

I Subscription

See community.oracle.com/docs/DOC-1006738

https://community.oracle.com/docs/DOC-1006738

Learning Objectives in this Part of the Lesson

« Know the Java reactive streams API
« Be aware of key patterns

Inform how many items
subscriber is willing to accept

Subscriber

Send acceptable

number of items

-==P Control

—» Data

See community.oracle.com/docs/DOC-1006738

https://community.oracle.com/docs/DOC-1006738

Learning Objectives in this Part of the Lesson

 Know the Java reactive streams API

« Recognize key abstractions

Ve

Publisher

onSubscribe

.. >
request (n)
Subscription canceIO
onNext*
(onError | onComplete)? >

Subscriber

Reactive Programming
& Java Reactive Streams

Reactive Programming & Java Reactive Streams

 Java 9+ supports reactive programming via Reactive Streams & the Flow API

Class Flow

java.lang.Object
java.util.concurrent.Flow

public final class Flow
extends Object

Interrelated interfaces and static methods for establishing flow-controlled components in which Publishers produce
items consumed by one or more Subscribers, each managed by a Subscription.

These interfaces correspond to the reactive-streams specification. They apply in both concurrent and distributed
asynchronous settings: All (seven) methods are defined in void "one-way" message style. Communication relies on a
simple form of flow control (method Flow.Subscription.request(long)) that can be used to avoid resource
management problems that may otherwise occur in "push" based systems.

Examples. A Flow.Publisher usually defines its own Flow.Subscription implementation; constructing one in method
subscribe and issuing it to the calling Flow.Subscriber. It publishes items to the subscriber asynchronously, normally
using an Executor. For example, here is a very simple publisher that only issues (when requested) a single TRUE item to
a single subscriber. Because the subscriber receives only a single item, this class does not use buffering and ordering
control required in most implementations (for example SubmissionPublisher).

See docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html

Reactive Programming & Java Reactive Streams
« Java 9+ supports reactive programming via Reactive Streams & the Flow API
« Adds support for stream-oriented pub/sub patterns

Inform how many items

“subscriber is willing to accept === Control

o ---

Subscriber —» Data

Send acceptable
number of items

See javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

http://javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

Reactive Programming & Java Reactive Streams
« Java 9+ supports reactive programming via Reactive Streams & the Flow API

Inform how many items

subscriber is willing to accept === Control

-
—» Data

Subscriber

Send acceptable
number of items

Design Patterns
Elements of Reusable

 Combines two patterns Onjc et fpre

Richard Helm
Ralph Jolinson
John Vlissides R

o

See www.journaldev.com/20723/java-9-reactive-streams

http://www.journaldev.com/20723/java-9-reactive-streams

Reactive Programming & Java Reactive Streams
« Java 9+ supports reactive programming via Reactive Streams & the Flow API

Inform how many items

<'""subscriber is willing to accept ===» Control
Subscriber » Data
Send acceptable
number of items DGSigﬂ Patterns
« Combines two patterns stofdsE;'m
« Iterator, which applies a “pull model” where app

subscriber(s) pull items from a publisher source

T

See en.wikipedia.org/wiki/Iterator pattern

https://en.wikipedia.org/wiki/Iterator_pattern

Reactive Programming & Java Reactive Streams

« Java 9+ supports reactive programming via Reactive Streams & the Flow API

Inform how many items
subscriber is willing to accept

o ----

Subscriber

Send acceptable
number of items

« Combines two patterns

« Observer, which applies a "push model” that reacts when
a publisher source pushes an item to subscriber sink(s)

-==9 Control

P Data

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gammal
Richard Helm
Ralph Johnson
John Vlissides

Foreword by Grady Booch

T

See en.wikipedia.org/wiki/Observer pattern

https://en.wikipedia.org/wiki/Observer_pattern

Reactive Programming & Java Reactive Streams

« The Java Flow API defines interfaces designed to ensure interoperability of

reactive streams implementations Py———
g DEFAULT_BUFFER_SIZE int [
m = defaultBufferSize() int
T
(@(0

I % Subscriber<T>

onSubscribe(Subscription) void

m

m) % onError(Throwable) void
m) = onComplete() void
m) i onNext(T) void

or

@
I % Publisher<T>

m subscribe(Subscriber<T>) void;

(I = Subscription

@) % request(long) void * - Processor<T, R>
F)
m) & cancel() void

See www.reactive-streams.org

http://www.reactive-streams.org/

Key Abstractions in
the Java Flow API

12

Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions

e

Publisher

................................. onSubscribep

onNext*
(onError | onComplete)?

Subscriber

See www.baeldung.com/java-9-reactive-streams

http://www.baeldung.com/java-9-reactive-streams

Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions

............................... onSubscribep

request (n)
Subscription cancel O Subscriber

onNext*
(onError | onComplete)?

1. Publisher(s) are sources that produce 0+
events that can be pushed to subscriber(s)

14

Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions

y
................................. onSubscribe ...
request (n)
Publisher Subscription cancel()
onNext*
(onError | onComplete)?
. J

2. Subscriber(s) are sinks that register for
& consume events pushed by publisher(s)

15

Key Abstractions in the Java Flow API

« A'flow” involves interactions (... onSubscribe ... o
between three key abstractions
..
request (n)
Publisher [Subscription]4‘-‘.‘.?99.‘.’.'..0 Subscriber
onNext*
(onError | onComplete)?

Publisher(s) push events to registered
subscriber(s) by invoking hook methods

See wiki.c2.com/?HookMethod

https://wiki.c2.com/?HookMethod

Key Abstractions in the Java Flow API

« A “flow” involves interactions [onSubscribe

between three key abstractions
.-'..."'.

onNext*
(onError | onComplete)?

Publisher Subscriber

request(3) Publisher
-

onNext()

onNext()

onNext()

request (n)

..9?99.?'. 0 Subscriber

\ 4

00000
vy v
000

3. Subscription is used to control the flow of
events between a subscriber & a publisher

See en.wikipedia.org/wiki/Flow control (data)

https://en.wikipedia.org/wiki/Flow_control_(data)

Key Abstractions in the Java Flow API

r e

« A “flow” involves interactions) 1. subscribe()
between three key abstractions

Request publisher to

Publish :
ublisher start streaming data

Subscriber

A reactive stream is “lazy” & just starts processing when subscribe() is called

Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions

e

Publisher

2. onSubscribe()

\

Hook method that
enables subscriber to
request events be sent

v

Subscriber

19

Key Abstractions in the Java Flow API

« A “flow” involves interactions | [
between three key abstractions l 3. request(n)
Publisher [Subscription } Subscriber
Inform publisher of
\ / initial event demand \

No events are sent by a publisher until demand is signaled via this method

Key Abstractions in the Java Flow API

« A “flow” involves interactions | i
between three key abstractions

Publisher [Subscription } Subscriber

4. onNext(data)

Data notification hook method called
by the publisher in response to requests

There can be 0 or more onNext() notifications, which form a “stream”

Key Abstractions in the Java Flow API

« A “flow” involves interactions |
between three key abstractions

Publisher

[Subscription }

Subscriber

5. onComplete()

/

Hook method called by publisher when
all events have been sent successfully

22

Key Abstractions in the Java Flow API

« A “flow” involves interactions i
between three key abstractions

Publisher [Subscription } Subscriber

5. onError(throwable)

Hook method called by a publisher when
an error occurs to convey the exception

23

End of Overview of the
Java Reactive Streams API

24

