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Learning Objectives in this Part of the Lesson
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See community.oracle.com/docs/DOC-1006738
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Learning Objectives in this Part of the Lesson

« Know the Java reactive streams API
« Be aware of key patterns
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Learning Objectives in this Part of the Lesson

 Know the Java reactive streams API

« Recognize key abstractions
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Reactive Programming & Java Reactive Streams

 Java 9+ supports reactive programming via Reactive Streams & the Flow API

Class Flow

java.lang.Object
java.util.concurrent.Flow

public final class Flow
extends Object

Interrelated interfaces and static methods for establishing flow-controlled components in which Publishers produce
items consumed by one or more Subscribers, each managed by a Subscription.

These interfaces correspond to the reactive-streams specification. They apply in both concurrent and distributed
asynchronous settings: All (seven) methods are defined in void "one-way" message style. Communication relies on a
simple form of flow control (method Flow.Subscription.request(long)) that can be used to avoid resource
management problems that may otherwise occur in "push" based systems.

Examples. A Flow.Publisher usually defines its own Flow.Subscription implementation; constructing one in method
subscribe and issuing it to the calling Flow.Subscriber. It publishes items to the subscriber asynchronously, normally
using an Executor. For example, here is a very simple publisher that only issues (when requested) a single TRUE item to
a single subscriber. Because the subscriber receives only a single item, this class does not use buffering and ordering
control required in most implementations (for example SubmissionPublisher).

See docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
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Reactive Programming & Java Reactive Streams
« Java 9+ supports reactive programming via Reactive Streams & the Flow API
« Adds support for stream-oriented pub/sub patterns
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See javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber
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Reactive Programming & Java Reactive Streams
« Java 9+ supports reactive programming via Reactive Streams & the Flow API
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See www.journaldev.com/20723/java-9-reactive-streams



http://www.journaldev.com/20723/java-9-reactive-streams

Reactive Programming & Java Reactive Streams
« Java 9+ supports reactive programming via Reactive Streams & the Flow API
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« Iterator, which applies a “pull model” where app
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See en.wikipedia.org/wiki/Iterator pattern
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Reactive Programming & Java Reactive Streams

« Java 9+ supports reactive programming via Reactive Streams & the Flow API
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subscriber is willing to accept
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« Combines two patterns

« Observer, which applies a "push model” that reacts when
a publisher source pushes an item to subscriber sink(s)
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Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gammal
Richard Helm
Ralph Johnson
John Vlissides

Foreword by Grady Booch
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See en.wikipedia.org/wiki/Observer pattern
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Reactive Programming & Java Reactive Streams

« The Java Flow API defines interfaces designed to ensure interoperability of

reactive streams implementations Py———
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See www.reactive-streams.org
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Key Abstractions in
the Java Flow API
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Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions

e
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See www.baeldung.com/java-9-reactive-streams
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Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions
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1. Publisher(s) are sources that produce 0+
events that can be pushed to subscriber(s)

14



Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions
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2. Subscriber(s) are sinks that register for
& consume events pushed by publisher(s)
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Key Abstractions in the Java Flow API

« A'flow” involves interactions (... onSubscribe ... o
between three key abstractions
..
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onNext*
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Publisher(s) push events to registered
subscriber(s) by invoking hook methods

See wiki.c2.com/?HookMethod
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Key Abstractions in the Java Flow API

« A “flow” involves interactions [ onSubscribe
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3. Subscription is used to control the flow of
events between a subscriber & a publisher

See en.wikipedia.org/wiki/Flow control (data)
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Key Abstractions in the Java Flow API
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« A “flow” involves interactions ) 1. subscribe()
between three key abstractions

Request publisher to

Publish :
ublisher start streaming data

Subscriber

A reactive stream is “lazy” & just starts processing when subscribe() is called




Key Abstractions in the Java Flow API

« A “flow” involves interactions
between three key abstractions

e
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Hook method that
enables subscriber to
request events be sent
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Subscriber
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Key Abstractions in the Java Flow API

« A “flow” involves interactions | [
between three key abstractions l 3. request(n)
Publisher [ Subscription } Subscriber
Inform publisher of
\ / initial event demand \

No events are sent by a publisher until demand is signaled via this method




Key Abstractions in the Java Flow API

« A “flow” involves interactions | i
between three key abstractions

Publisher [ Subscription } Subscriber

4. onNext(data)

Data notification hook method called
by the publisher in response to requests

There can be 0 or more onNext() notifications, which form a “stream”




Key Abstractions in the Java Flow API

« A “flow” involves interactions |
between three key abstractions

Publisher

[ Subscription }

Subscriber

5. onComplete()

/

Hook method called by publisher when
all events have been sent successfully
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Key Abstractions in the Java Flow API

« A “flow” involves interactions i
between three key abstractions

Publisher [ Subscription } Subscriber

5. onError(throwable)

Hook method called by a publisher when
an error occurs to convey the exception
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End of Overview of the
Java Reactive Streams API
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