
Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

Advanced Java CompletableFuture Features:
Two Stage Completion Methods (Part 2)

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how completion stage

methods chain dependent actions
• Know how to group these methods
• Single stage methods
• Two stage methods (and)
• Two stage methods (or)

Exception
methods

Completion stage methods

Factory
methodsArbitrary-arity

methods

Basic methods

See en.wikipedia.org/wiki/Logical_disjunction

https://en.wikipedia.org/wiki/Logical_disjunction

3

Learning Objectives in this Part of the Lesson
• Understand how completion stage

methods chain dependent actions
• Know how to group these methods
• Single stage methods
• Two stage methods (and)
• Two stage methods (or)

Exception
methods

Completion stage methods

Factory
methodsArbitrary-arity

methods

Basic methods

See en.wikipedia.org/wiki/Logical_disjunction

https://en.wikipedia.org/wiki/Logical_disjunction

4

Methods Triggered by
Completion of Two Stages

5

• Methods triggered by completion
of either of two previous stages
• acceptEither()

Methods Triggered by Completion of Either of Two Stages
CompletableFuture<Void> acceptEither
 (CompletionStage<? Extends T>
 other,
 Consumer<? super T> action)
{ ... }

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#acceptEither

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

6

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

CompletableFuture<Void> acceptEither
 (CompletionStage<? Extends T>
 other,
 Consumer<? super T> action)
{ ... }

See en.wikipedia.org/wiki/Logical_disjunction

Methods Triggered by Completion of Either of Two Stages

https://en.wikipedia.org/wiki/Logical_disjunction

7

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results
• Two futures are used here:

CompletableFuture<Void> acceptEither
 (CompletionStage<? Extends T>
 other,
 Consumer<? super T> action)
{ ... }

Methods Triggered by Completion of Either of Two Stages

8

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results
• Two futures are used here:
• The future used to invoke acceptEither()
• Not shown since it’s not part of the method signature, but

is implied since acceptEither() is a non-static method

CompletableFuture<Void> acceptEither
 (CompletionStage<? Extends T>
 other,
 Consumer<? super T> action)
{ ... }

Methods Triggered by Completion of Either of Two Stages

9

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results
• Two futures are used here:
• The future used to invoke acceptEither()
• The `other’ future passed to acceptEither()

CompletableFuture<Void> acceptEither
 (CompletionStage<? Extends T>
 other,
 Consumer<? super T> action)
{ ... }

Methods Triggered by Completion of Either of Two Stages

10

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

• Returns a future to Void

CompletableFuture<Void> acceptEither
 (CompletionStage<? Extends T>
 other,
 Consumer<? super T> action)
{ ... }

Methods Triggered by Completion of Either of Two Stages

See www.baeldung.com/java-void-type

http://www.baeldung.com/java-void-type

11

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

• Returns a future to Void
• Often used at the end of a

chain of completion stages

CompletableFuture<List<BigFraction>>
 quickSortF = CompletableFuture
 .supplyAsync(() ->
 quickSort(list));

CompletableFuture<List<BigFraction>>
 mergeSortF = CompletableFuture
 .supplyAsync(() ->
 mergeSort(list));

Methods Triggered by Completion of Either of Two Stages

12

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

• Returns a future to Void
• Often used at the end of a

chain of completion stages

CompletableFuture<List<BigFraction>>
 quickSortF = CompletableFuture
 .supplyAsync(() ->
 quickSort(list));

CompletableFuture<List<BigFraction>>
 mergeSortF = CompletableFuture
 .supplyAsync(() ->
 mergeSort(list));

Create a pair of CompletableFuture
objects that will contain the results

of sorting the list using two different
algorithms in two different threads

Methods Triggered by Completion of Either of Two Stages

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

13

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

• Returns a future to Void
• Often used at the end of a

chain of completion stages

CompletableFuture<List<BigFraction>>
 quickSortF = CompletableFuture
 .supplyAsync(() ->
 quickSort(list));

CompletableFuture<List<BigFraction>>
 mergeSortF = CompletableFuture
 .supplyAsync(() ->
 mergeSort(list));

quickSortF.acceptEither
 (mergeSortF, results -> results
 .forEach(fraction ->
 System.out.println
 (fraction
 .toMixedString())));

This method is invoked when either
quickSortF or mergeSortF complete

Methods Triggered by Completion of Either of Two Stages

14

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

• Returns a future to Void
• Often used at the end of a

chain of completion stages

CompletableFuture<List<BigFraction>>
 quickSortF = CompletableFuture
 .supplyAsync(() ->
 quickSort(list));

CompletableFuture<List<BigFraction>>
 mergeSortF = CompletableFuture
 .supplyAsync(() ->
 mergeSort(list));

quickSortF.acceptEither
 (mergeSortF, results -> results
 .forEach(fraction ->
 System.out.println
 (fraction
 .toMixedString())));

Printout sorted results from which
ever sorting routine finished first

Methods Triggered by Completion of Either of Two Stages

15

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

• Returns a future to Void
• Often used at the end of a

chain of completion stages

CompletableFuture<List<BigFraction>>
 quickSortF = CompletableFuture
 .supplyAsync(() ->
 quickSort(list));

CompletableFuture<List<BigFraction>>
 mergeSortF = CompletableFuture
 .supplyAsync(() ->
 mergeSort(list));

quickSortF.acceptEither
 (mergeSortF, results -> results
 .forEach(fraction ->
 System.out.println
 (fraction
 .toMixedString())));

acceptEither() does not cancel the second future after the first one completes

Methods Triggered by Completion of Either of Two Stages

16

• Methods triggered by completion
of either of two previous stages
• acceptEither()
• Applies a Consumer action

that handles either of the
previous stages' results

• Returns a future to Void
• Often used at the end of a

chain of completion stages

CompletableFuture<List<BigFraction>>
 quickSortF = CompletableFuture
 .supplyAsync(() ->
 quickSort(list));

CompletableFuture<List<BigFraction>>
 mergeSortF = CompletableFuture
 .supplyAsync(() ->
 mergeSort(list));

quickSortF.acceptEitherAsync
 (mergeSortF, results ->
 aLongDurationConsumer(results))

Methods Triggered by Completion of Either of Two Stages

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#acceptEitherAsync

acceptEitherAsync() can be used if
a long-duration Consumer is applied

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

17

End of Advanced Java
CompletableFuture Features:

Two Stage Completion
Methods (Part 2)

