Two Stage Completion Methods (Part 2}

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Completion stage methods

« Two stage methods (or)

Bl Completion of Either of
Two Previous Stages

M Completion of Both of

Two Previous Stages

e S " Exception
methods

Factory

Arbitrary-arity methods

methods

Basic methods

See en.wikipedia.org/wiki/Logical disjunction

https://en.wikipedia.org/wiki/Logical_disjunction

Learning Objectives in this Part of the Lesson

Completion stage methods

« Two stage methods (or)

Exception
methods

Factory
methods

Arbitrary-arity
methods

Basic methods

See en.wikipedia.org/wiki/Logical disjunction

https://en.wikipedia.org/wiki/Logical_disjunction

Methods Triggered by
Completion of Two Stages

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#acceptEither

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

Methods Triggered by Completion of Either of Two Stages

Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages =~ (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

» Applies a Consumer action { ... 1}
that handles either of the
previous stages' results

See en.wikipedia.org/wiki/Logical disjunction

https://en.wikipedia.org/wiki/Logical_disjunction

Methods Triggered by Completion of Either of Two Stages

Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

» Applies a Consumer action { ... 1}
that handles either of the
previous stages' results

e Two futures are used here:

Methods Triggered by Completion of Either of Two Stages

Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages =~ (CompletionStage<? Extends T>

_ other,
- acceptEither() Consumer<? super T> action)

» Applies a Consumer action { ... 1}
that handles either of the
previous stages' results

« Two futures are used here:
« The future used to invoke acceptEither()

« Not shown since it’s not part of the method signature, but
is implied since acceptEither() is a non-static method

Methods Triggered by Completion of Either of Two Stages

Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages =~ (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

» Applies a Consumer action { ... 1}
that handles either of the
previous stages' results

e Two futures are used here:

« The "other’ future passed to acceptEither()

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<vVoid> acceptEither
of either of two previous stages (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

{ ... 1}

« Returns a future to Void

See www.baeldung.com/java-void-type

http://www.baeldung.com/java-void-type

Methods Triggered by Completion of Either of Two Stages

 Methods triggered by completion CompletableFuture<List<BigFraction>>

of either of two previous stages quickSortF = CompletableFuture
_ .supplyAsync(() ->
* acceptEither() quickSort(list)) ;

CompletableFuture<List<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync(() ->
mergeSort (list)) ;

T adls

e i

« Often used at the end of a
chain of completion stages

11

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>
of either of two previous stages quickSortF = CompletableFuture

] .supplyAsync(() ->
« acceptEither() quickSort (list)) ;

CompletableFuture<liist<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync(({) ->
ergeSort (list)) ;

 Often used at the end of a /

chain of completion stages Create a pair of CompletableFuture

objects that will contain the results
of sorting the list using two different
algorithms in two different threads

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>

of either of two previous stages quickSortF = CompletableFuture
_ .supplyAsync(() ->
* acceptEither() quickSort(list)) ;

CompletableFuture<List<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync(() ->
mergeSort (list)) ;

« Often used at the end of a

chain of completion stages =~ quickSortF.acceptiither

(mergeSortF, results -> results
.forEach (fraction ->

This method is invoked when either System.out.println

quickSortF or mergeSortF complete (fraction
.toMixedString()))),

13

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>

of either of two previous stages quickSortF = CompletableFuture
_ .supplyAsync(() ->
* acceptEither() quickSort(list)) ;

CompletableFuture<List<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync(() ->
mergeSort (list)) ;

« Often used at the end of a

chain of completion stages = IuickSortF.acceptEither

(mergeSortF, results -> results
.forEach (fraction ->
Printout sorted results from which | — System.out.println
ever sorting routine finished first (fraction
.toMixedString()))) ;

14

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<Big
of either of two previous stages quickSortF = Complg

: 1lyA
* acceptEither() supplyAsync ((

Fraction>>

CompletableFutur@l w
mergeSortF = C}
.supplyAsync

« Often used at the end of a

chain of completion stages =~ IuickSortF.acceptiither

(mergeSortF, results -> results
.forEach (fraction ->
System.out.println
(fraction
.toMixedString()))),

acceptEither() does not cancel the second future after the first one completes

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>

of either of two previous stages quickSoirtF = Cczr?;;letableFuture
: . supplyAsync ->
* acceptEither() quickSort(list)) ;

CompletableFuture<List<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync(() ->
mergeSort (list)) ;

« Often used at the end of a

chain of completion stages quickSortE.acceptEitherAsync

(mer ortF, results ->
alongDurationConsumer (results))

acceptEitherAsync() can be used if
a long-duration Consumer is applied

See docs.orade.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.himl#acceptEitherAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

End of Advanced Java
CompletableFuture Features:
Two Stage Completion
Methods (Part 2)

17

