
Advanced Java CompletableFuture Features:
Single Stage Completion Methods (Part 2)

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how completion stage

methods chain dependent actions
• Know how to group these methods
• Single stage methods, e.g.
• thenApply() & thenCompose()
• thenAccept() & comparison of

thenApply() & thenCompose()

Exception
methods

Completion stage methods

Factory
methodsArbitrary-arity

methods

Basic methods

3

Methods Triggered by
Completion of a Single Stage

4

• Methods triggered by completion
of a single previous stage
• thenAccept()

Methods Triggered by Completion of a Single Stage
CompletableFuture<Void>
 thenAccept
 (Consumer<? super T> action)
{ ... }

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenAccept

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

5See docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

• Methods triggered by completion
of a single previous stage
• thenAccept()
• Applies a Consumer action to

handle previous stage’s result

Methods Triggered by Completion of a Single Stage
CompletableFuture<Void>
 thenAccept
 (Consumer<? super T> action)
{ ... }

http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

6

• Methods triggered by completion
of a single previous stage
• thenAccept()
• Applies a Consumer action to

handle previous stage’s result

Methods Triggered by Completion of a Single Stage
CompletableFuture<Void>
 thenAccept
 (Consumer<? super T> action)
{ ... }

This action behaves as a
“callback” with a side-effect

See en.wikipedia.org/wiki/Callback_(computer_programming)

https://en.wikipedia.org/wiki/Callback_(computer_programming)

7

• Methods triggered by completion
of a single previous stage
• thenAccept()
• Applies a Consumer action to

handle previous stage’s result
• Returns a future to Void

Methods Triggered by Completion of a Single Stage
CompletableFuture<Void>
 thenAccept
 (Consumer<? super T> action)
{ ... }

See www.baeldung.com/java-void-type

http://www.baeldung.com/java-void-type

8

BigFraction unreduced = BigFraction
 .valueOf(new BigInteger("..."),
 new BigInteger("..."),
 false); // Don’t reduce!

Supplier<BigFraction> reduce = ()
 -> BigFraction.reduce(unreduced);

CompletableFuture
 .supplyAsync(reduce)
 .thenApply(BigFraction
 ::toMixedString)
 .thenAccept(System.out::println);

• Methods triggered by completion
of a single previous stage
• thenAccept()
• Applies a Consumer action to

handle previous stage’s result
• Returns a future to Void
• Often used at the end of a

chain of completion stages

Methods Triggered by Completion of a Single Stage

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

9

BigFraction unreduced = BigFraction
 .valueOf(new BigInteger("..."),
 new BigInteger("..."),
 false); // Don’t reduce!

Supplier<BigFraction> reduce = ()
 -> BigFraction.reduce(unreduced);

CompletableFuture
 .supplyAsync(reduce)
 .thenApply(BigFraction
 ::toMixedString)
 .thenAccept(System.out::println);

• Methods triggered by completion
of a single previous stage
• thenAccept()
• Applies a Consumer action to

handle previous stage’s result
• Returns a future to Void
• Often used at the end of a

chain of completion stages

Methods Triggered by Completion of a Single Stage

thenApply() returns a string future that thenAccept() prints after it completes

10

BigFraction unreduced = BigFraction
 .valueOf(new BigInteger("..."),
 new BigInteger("..."),
 false); // Don’t reduce!

Supplier<BigFraction> reduce = ()
 -> BigFraction.reduce(unreduced);

CompletableFuture
 .supplyAsync(reduce)
 .thenApply(BigFraction
 ::toMixedString)
 .thenAccept(System.out::println);

• Methods triggered by completion
of a single previous stage
• thenAccept()
• Applies a Consumer action to

handle previous stage’s result
• Returns a future to Void
• Often used at the end of a

chain of completion stages

Methods Triggered by Completion of a Single Stage

println() is a callback with a side-effect (i.e., printing the mixed string)

See en.wikipedia.org/wiki/Callback_(computer_programming)

https://en.wikipedia.org/wiki/Callback_(computer_programming)

11

• Methods triggered by completion
of a single previous stage
• thenAccept()
• Applies a Consumer action to

handle previous stage’s result
• Returns a future to Void
• Often used at the end of a

chain of completion stages
• May lead to “callback hell”

if used excessively!

Methods Triggered by Completion of a Single Stage

See dzone.com/articles/callback-hell

https://dzone.com/articles/callback-hell

12

Comparing thenApply()
& thenCompose()

13

• thenApply() & thenCompose()
have similar method signatures

Comparing thenApply() & thenCompose()
CompletableFuture<U> thenApply
 (Function<? super T,

? extends U> fn)
{ ... }

CompletableFuture<U> thenCompose
 (Function<? super T,

? extends
CompletionStage<U>> fn)

{ ... }

14

Function<BF, CompletableFuture<
 CompletableFuture<BF>>>
 reduceAndMultiplyFractions =
 unreduced -> CompletableFuture
 .supplyAsync
 (() -> BF.reduce(unreduced))

 .thenApply
 (reduced -> CompletableFuture
 .supplyAsync(() ->
 reduced.multiply(...)));
 ...

• Unlike thenApply(), however,
thenCompose() avoids unwieldy
nesting of futures

Comparing thenApply() & thenCompose()

Nesting is
unwieldy!

15

• Unlike thenApply(), however,
thenCompose() avoids unwieldy
nesting of futures

Comparing thenApply() & thenCompose()

Eliminates the
nesting of futures
via “flattening”!

Function<BF,
 CompletableFuture<BF>>
 reduceAndMultiplyFractions =
 unreduced -> CompletableFuture
 .supplyAsync
 (() -> BF.reduce(unreduced))

 .thenCompose
 (reduced -> CompletableFuture
 .supplyAsync(() ->
 reduced.multiply(...)));
 ...

16

• Unlike thenApply(), however,
thenCompose() avoids unwieldy
nesting of futures
• thenApplyAsync() can often

be used to replace nesting of
thenCompose(supplyAsync())

Function<BF,
 CompletableFuture<BF>>
 reduceAndMultiplyFractions =
 unreduced -> CompletableFuture
 .supplyAsync
 (() -> BF.reduce(unreduced))

 .thenApplyAsync(reduced
 -> reduced.multiply(...)));
 ...
 ...

Comparing thenApply() & thenCompose()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenApplyAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

17

supplyAsync() will return a
CompletableFuture to a

CompletableFuture here!!

• Unlike thenApply(), however,
thenCompose() avoids unwieldy
nesting of futures
• thenApplyAsync() can often

be used to replace nesting of
thenCompose(supplyAsync())

• thenCompse() can also avoid
calling join() when flattening
nested completable futures

Comparing thenApply() & thenCompose()
CompletableFuture<Integer> countF =
 .CompletableFuture
 .supplyAsync
 (() ->
 longRunnerReturnsCF())

 .thenCompose
 (Function.identity())
 ...

18

This idiom flattens the return value
to “just” one CompletableFuture!

• Unlike thenApply(), however,
thenCompose() avoids unwieldy
nesting of futures
• thenApplyAsync() can often

be used to replace nesting of
thenCompose(supplyAsync())

• thenCompse() can also avoid
calling join() when flattening
nested completable futures

Comparing thenApply() & thenCompose()
CompletableFuture<Integer> countF =
 .CompletableFuture
 .supplyAsync
 (() ->
 longRunnerReturnsCF())

 .thenCompose
 (Function.identity())
 ...

19

Runs longBlockerReturnsCF() in
a common fork-join pool thread

• Unlike thenApply(), however,
thenCompose() avoids unwieldy
nesting of futures
• thenApplyAsync() can often

be used to replace nesting of
thenCompose(supplyAsync())

• thenCompse() can also avoid
calling join() when flattening
nested completable futures

• thenComposeAsync() can avoid
calling supplyAsync() again in
a chain

Comparing thenApply() & thenCompose()
CompletableFuture<Integer> countF =
 .CompletableFuture
 .supplyAsync
 (() ->
 longRunnerReturnsCF())

 .thenComposeAsync
 (this::longerBlockerReturnsCF)
 ...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenComposeAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

20

End of Advanced Java
CompletableFuture Features:

Single Stage Completion
Methods (Part 2)

