
Advanced Java CompletableFuture
Features: Factory Method Internals

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how factory methods

initiate async computations
• Know how to apply factory methods
• Appreciate the internals of factory

methods
• Show how supplyAsync() maps

to the Common Fork-Join Pool

CompletableFuture<BigFraction>
future = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);

 return bf1
 .multiply(bf2);});

3

Learning Objectives in this Part of the Lesson
• Understand how factory methods

initiate async computations
• Know how to apply factory methods
• Appreciate the internals of factory

methods
• Show how supplyAsync() maps

to the Common Fork-Join Pool
• See how supplyAsync() runs a

supplier lambda concurrently
& asynchronously

4

Mapping supplyAsync() to
the Common Fork-Join Pool

5See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);

 return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

• supplyAsync() arranges to run the supplier lambda param concurrently &
asynchronously in a thread residing in the Java common fork-join pool

Mapping supplyAsync() to the Common Fork-Join Pool

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

6

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);

 return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

• supplyAsync() arranges to run the supplier lambda param concurrently &
asynchronously in a thread residing in the Java common fork-join pool

Mapping supplyAsync() to the Common Fork-Join Pool

supplyAsync() does not
create a new thread!

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#supplyAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

7

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);

 return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

Instead, it return a future that’s
completed by a worker thread

running in common fork-join pool

Mapping supplyAsync() to the Common Fork-Join Pool
• supplyAsync() arranges to run the supplier lambda param concurrently &

asynchronously in a thread residing in the Java common fork-join pool

See dzone.com/articles/be-aware-of-forkjoinpoolcommonpool

https://dzone.com/articles/be-aware-of-forkjoinpoolcommonpool

8

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);

 return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

• supplyAsync() arranges to run the supplier lambda param concurrently &
asynchronously in a thread residing in the Java common fork-join pool

supplyAsync()’s param is a supplier lambda
that multiplies two BigFraction objects

Mapping supplyAsync() to the Common Fork-Join Pool

9

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);

 return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

Although Supplier.get() takes no
params, effectively final values can
be passed to this supplier lambda

See javarevisited.blogspot.com/2015/03/what-is-effectively-final-variable-of.html

Mapping supplyAsync() to the Common Fork-Join Pool
• supplyAsync() arranges to run the supplier lambda param concurrently &

asynchronously in a thread residing in the Java common fork-join pool

http://javarevisited.blogspot.com/2015/03/what-is-effectively-final-variable-of.html

10See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#supplyAsync

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
 .supplyAsync(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);

 return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

The worker thread calls the Supplier.
get() method to obtain this supplier
lambda & perform the computation

Mapping supplyAsync() to the Common Fork-Join Pool
• supplyAsync() arranges to run the supplier lambda param concurrently &

asynchronously in a thread residing in the Java common fork-join pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

11

Internals of Completable
Future Factory Methods

12

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
 ...
 CompletableFuture<U> f =
 new CompletableFuture<U>();

 execAsync(ForkJoinPool.commonPool(),
 new AsyncSupply<U>(supplier, f));

 return f;
}
...

See classes/java/util/concurrent/CompletableFuture.java

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

Here’s how supplyAsync() code
uses the supplier passed to it

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CompletableFuture.java

13

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
 ...
 CompletableFuture<U> f =
 new CompletableFuture<U>();

 execAsync(ForkJoinPool.commonPool(),
 new AsyncSupply<U>(supplier, f));

 return f;
}
...

() -> { ... return
 bf1.multiply(bf2);
}

The supplier parameter is bound to the lambda passed to supplyAsync()

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

14

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
 ...
 CompletableFuture<U> f =
 new CompletableFuture<U>();

 execAsync(ForkJoinPool.commonPool(),
 new AsyncSupply<U>(supplier, f));

 return f;
}
...

Create an “incomplete” future
here that’s just a placeholder

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#CompletableFuture

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

15

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
 ...
 CompletableFuture<U> f =
 new CompletableFuture<U>();

 execAsync(ForkJoinPool.commonPool(),
 new AsyncSupply<U>(supplier, f));

 return f;
}
...

The supplier & incomplete future are
encapsulated in an AsyncSupply message

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

16

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
 ...
 CompletableFuture<U> f =
 new CompletableFuture<U>();

 execAsync(ForkJoinPool.commonPool(),
 new AsyncSupply<U>(supplier, f));

 return f;
}
...

This message is enqueued for async
execution in common fork-join pool.

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

This is an example of “message-driven” design a la Reactive programming!

17

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
 ...
 CompletableFuture<U> f =
 new CompletableFuture<U>();

 execAsync(ForkJoinPool.commonPool(),
 new AsyncSupply<U>(supplier, f));

 return f;
}
...

The incomplete future is returned to
the caller for subsequent use (e.g.,
with completion stage methods)

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

18

static final class AsyncSupply<U> extends Async {
 final Supplier<U> fn;
 final CompletableFuture<U> dst;

 AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst)
 { this.fn = fn; this.dst = dst; }

 public final boolean exec() {
 ...
 U u = fn.get();
 ...
 d.internalComplete(u, ex);
 ...

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a

thread residing in the Java common fork-join pool

See classes/java/util/concurrent/CompletableFuture.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CompletableFuture.java

19

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a

thread residing in the Java common fork-join pool

See classes/java/util/concurrent/CompletableFuture.java

static final class AsyncSupply<U> extends Async {
 final Supplier<U> fn;
 final CompletableFuture<U> dst;

 AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst)
 { this.fn = fn; this.dst = dst; }

 public final boolean exec() {
 ...
 U u = fn.get();
 ...
 d.internalComplete(u, ex);
 ...

Async extends ForkJoinTask &
Runnable so it can be executed

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CompletableFuture.java

20AsyncSupply stores the original supplier lambda passed into supplyAsync()

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
 final Supplier<U> fn;
 final CompletableFuture<U> dst;

 AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst)
 { this.fn = fn; this.dst = dst; }

 public final boolean exec() {
 ...
 U u = fn.get();
 ...
 d.internalComplete(u, ex);
 ...

() -> { ... return
 bf1.multiply(bf2); }

21A worker thread then runs the supplier lambda asynchronously & stores the result

() -> { ... return
 bf1.multiply(bf2);
}

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
 final Supplier<U> fn;
 final CompletableFuture<U> dst;

 AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst)
 { this.fn = fn; this.dst = dst; }

 public final boolean exec() {
 ...
 U u = fn.get();
 ...
 d.internalComplete(u, ex);
 ...

22See earlier lesson on “The Java Fork-Join Pool: the ManagedBlocker Interface”

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
 final Supplier<U> fn;
 final CompletableFuture<U> dst;

 AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst)
 { this.fn = fn; this.dst = dst; }

 public final boolean exec() {
 ...
 U u = fn.get();
 ...
 d.internalComplete(u, ex);
 ...

get() can use the ForkJoinPool Managed
Blocker mechanism to auto-scale the

common pool size for blocking operations

23

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
 final Supplier<U> fn;
 final CompletableFuture<U> dst;

 AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst)
 { this.fn = fn; this.dst = dst; }

 public final boolean exec() {
 ...
 U u = fn.get();
 ...
 d.internalComplete(u, ex);
 ...

Trigger completion of the future using
 the encoding of the given arguments

24

End of Advanced Java
CompletableFuture Features:

Factory Method Internals

