
How Java Completable Futures
Overcome Limitations of Java Futures

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize how Java completable futures

overcome limitations with Java futures
& helps fight complexity

See earlier lesson on “Overview of the Java Completable Futures Framework”

3

Overcoming Limitations
with Java Futures

4

• The completable futures framework
overcomes Java future limitations

Overcoming Limitations with Java Futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

5

• The completable futures framework
overcomes Java future limitations
• Can be completed explicitly

Overcoming Limitations with Java Futures
CompletableFuture<...> future =
 new CompletableFuture<>();

new Thread (() -> {
 ...
 future.complete(...);
}).start();

...
System.out.println(future.join());

After complete() is done
calls to join() will unblock

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

6

• The completable futures framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained fluently to handle

async results efficiently & cleanly

Overcoming Limitations with Java Futures
CompletableFuture
 .supplyAsync(reduceFraction)
 .thenApply(BigFraction
 ::toMixedString)
 .thenAccept(System.out::println);

See en.wikipedia.org/wiki/Fluent_interface

The action of each “completion stage”
is triggered when the previous stage’s

future completes asynchronously

https://en.wikipedia.org/wiki/Fluent_interface

7

• The completable futures framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained fluently to handle

async results efficiently & cleanly
• Async programming thus looks

more like sync programming!

Overcoming Limitations with Java Futures
CompletableFuture
 .supplyAsync(reduceFraction)
 .thenApply(BigFraction
 ::toMixedString)
 .thenAccept(System.out::println);

8

• The completable futures framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained fluently to handle

async results efficiently & cleanly
• Can be triggered reactively &

efficiently as a collection of
futures w/out undue overhead

Overcoming Limitations with Java Futures
CompletableFuture<List
 <BigFraction>> futureToList =
 Stream
 .generate(generator)
 .limit(sMAX_FRACTIONS)
 .map(reduceFractions)
 .collect(FuturesCollector
 .toFuture());

futureToList
 .thenAccept(printList);

Create a single future that will be triggered
when a group of other futures all complete

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

9

• The completable futures framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained fluently to handle

async results efficiently & cleanly
• Can be triggered reactively &

efficiently as a collection of
futures w/out undue overhead

Overcoming Limitations with Java Futures
CompletableFuture<List
 <BigFraction>> futureToList =
 Stream
 .generate(generator)
 .limit(sMAX_FRACTIONS)
 .map(reduceFractions)
 .collect(FuturesCollector
 .toFuture());

futureToList
 .thenAccept(printList);

Print out the results after all async
fraction reductions have completed

10

• The completable futures framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained fluently to handle

async results efficiently & cleanly
• Can be triggered reactively &

efficiently as a collection of
futures w/out undue overhead

Overcoming Limitations with Java Futures
CompletableFuture<List
 <BigFraction>> futureToList =
 Stream
 .generate(generator)
 .limit(sMAX_FRACTIONS)
 .map(reduceFractions)
 .collect(FuturesCollector
 .toFuture());

futureToList
 .thenAccept(printList);

Java completable futures can also be
combined with Java sequential streams

11

End of How Java
Completable Futures Overcome
Limitations of Java Futures

