
Evaluating the Pros & Cons of Java Futures

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Motivate the need for Java futures

by understanding the pros & cons
of synchrony & asynchrony

• Know how Java futures provide
the foundation for completable
futures in Java

• Understand how to multiply
BigFraction objects concurrently
via Java futures

• Motivate the need for Java
completable futures by evaluating
the pros & cons with Java futures

3

The Pros of Java Futures

4

• Pros of async calls with Java futures
The Pros of Java Futures

5

• Pros of async calls with Java futures
• May leverage parallelism more

effectively with fewer threads

The Pros of Java Futures

45,000+ phrases
"do", "re", "mi", "fa",
"so", "la", "ti", "do"

Search Words

Input Strings to Search

…

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchTaskGang

submit()

3.take()
4.run()

runnable

SearchResults

SearchResults

SearchResults

SearchResults

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

5.add()

Variable
WorkerThreadstake()

1.submit(task)

7.take()
take()

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchTaskGang

6

• Pros of async calls with Java futures
• May leverage parallelism more

effectively with fewer threads, e.g.,
• Queue async computations for

execution in a pool of threads

mCompletionService
 .submit(() ->
 searchForWord(word,
 input));

submit()

3.take()
4.run()

runnable

SearchResults

SearchResults

SearchResults

SearchResults

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

5.add()

Variable
WorkerThreadstake()

1.submit(task)

7.take()
take()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html#submit

The Pros of Java Futures

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

7

• Pros of async calls with Java futures
• May leverage parallelism more

effectively with fewer threads, e.g.,
• Queue async computations for

execution in a pool of threads
• Automatically tune # of threads

submit()

3.take()
4.run()

runnable

SearchResults

SearchResults

SearchResults

SearchResults

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

5.add()

Variable
WorkerThreadstake()

1.submit(task)

7.take()
take()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool

mCompletionService
 .submit(() ->
 searchForWord(word,
 input));

The Pros of Java Futures

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

8

• Pros of async calls with Java futures
• May leverage parallelism more

effectively with fewer threads, e.g.,
• Queue async computations for

execution in a pool of threads
• Automatically tune # of threads
• Results can be taken from

queue of completed futures

submit()

3.take()
4.run()

runnable

SearchResults

SearchResults

SearchResults

SearchResults

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

5.add()

Variable
WorkerThreadstake()

1.submit(task)

7.take()
take()

Future<SearchResults> resultF =
 mCompletionService.take();

resultF.get().print()

take() blocks, but get() doesn’t

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html#take

The Pros of Java Futures

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

9

• Pros of async calls with Java futures
• May leverage parallelism more

effectively with fewer threads
• Can block until the result of an

async two-way task is available

String f1 = "62675744/15668936";
String f2 = "609136/913704";

 Future<BigFraction> f =
 commonPool().submit(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);
 return bf1.multiply(bf2);
 });
 ...
 BigFraction result =
 f.get();

The Pros of Java Futures

10

• Pros of async calls with Java futures
• May leverage parallelism more

effectively with fewer threads
• Can block until the result of an

async two-way task is available
• Can also poll or time-wait

String f1 = "62675744/15668936";
String f2 = "609136/913704";

 Future<BigFraction> f =
 commonPool().submit(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);
 return bf1.multiply(bf2);
 });
 ...
 BigFraction result =
 f.get(n, MILLISECONDS);

The Pros of Java Futures

May help to make an asynchronous program more responsive

11

• Pros of async calls with Java futures
• May leverage parallelism more

effectively with fewer threads
• Can block until the result of an

async two-way task is available
• Can be canceled & tested to see

if a task is done or cancelled

String f1 = "62675744/15668936";
String f2 = "609136/913704";

 Future<BigFraction> f =
 commonPool().submit(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);
 return bf1.multiply(bf2);
 });
 ...
 if (!(f.isDone()
 || !f.isCancelled()))
 f.cancel();

The Pros of Java Futures

May help to an asynchronous program more responsive & efficient wrt resource usage

12

The Cons of Java Futures

13

• Cons of async calls with Java futures
The Cons of Java Futures

14

• Cons of async calls with Java futures
• Limited feature set

The Cons of Java Futures

15

• Cons of async calls with Java futures
• Limited feature set
• Cannot be completed explicitly
• e.g., additional mechanisms

like FutureTask are needed

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/FutureTask.html

The Cons of Java Futures

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/FutureTask.html

16

• Cons of async calls with Java futures
• Limited feature set
• Cannot be completed explicitly
• Cannot be chained fluently
• i.e., dependent actions

can’t be triggered to
handle results of
async processing

See en.wikipedia.org/wiki/Fluent_interface

The Cons of Java Futures

https://en.wikipedia.org/wiki/Fluent_interface

17

• Cons of async calls with Java futures
• Limited feature set
• Cannot be completed explicitly
• Cannot be chained fluently
• Cannot be triggered reactively
• i.e., must (timed-)wait or poll

String f1 = "62675744/15668936";
String f2 = "609136/913704";

 Future<BigFraction> f =
 commonPool().submit(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);
 return bf1.multiply(bf2);
 });
 ...
 BigFraction result = f.get();
 // f.get(10, MILLISECONDS);
 // f.get(0, 0);

The Cons of Java Futures

18

• Cons of async calls with Java futures
• Limited feature set
• Cannot be completed explicitly
• Cannot be chained fluently
• Cannot be triggered reactively
• i.e., must (timed-)wait or poll

String f1 = "62675744/15668936";
String f2 = "609136/913704";

 Future<BigFraction> f =
 commonPool().submit(() -> {
 BigFraction bf1 =
 new BigFraction(f1);
 BigFraction bf2 =
 new BigFraction(f2);
 return bf1.multiply(bf2);
 });
 ...
 BigFraction result = f.get();
 // f.get(10, MILLISECONDS);
 // f.get(0, 0);

See crondev.blog/2017/01/23/timeouts-with-java-8-completablefuture-youre-probably-doing-it-wrong

The Cons of Java Futures

Nearly always
the wrong

thing to do!!

https://crondev.blog/2017/01/23/timeouts-with-java-8-completablefuture-youre-probably-doing-it-wrong

19

• Cons of async calls with Java futures
• Limited feature set
• Cannot be completed explicitly
• Cannot be chained fluently
• Cannot be triggered reactively
• Cannot be treated efficiently

as a collection of futures

Future<BigFraction> future1 =
 commonPool().submit(() -> {
 ... });

Future<BigFraction> future2 =
 commonPool().submit(() -> {
 ... });

...
future1.get();
future2.get();

Can’t wait efficiently for the completion of
whichever async computation finishes first

The Cons of Java Futures

20

• Cons of async calls with Java futures
• Limited feature set
• Cannot be completed explicitly
• Cannot be chained fluently
• Cannot be triggered reactively
• Cannot be treated efficiently

as a collection of futures

In general, it’s awkward & inefficient to “compose” multiple futures

The Cons of Java Futures

21

• These limitations with Java futures
motivate the need for the Java
completable futures framework!

See lesson on “Overcoming Limitations with Java Futures via Java Completable Futures”

The Cons of Java Futures

22

End of Evaluating the Pros
& Cons of Java Futures

