Overview of Asynchrony &

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand what asynchrony &
asynchronous operations are t

See en.wikipedia.org/wiki/Asynchrony (computer programming)

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

Overview of Asynchrony &
Asynchronous Operations

Overview of Asynchrony & Asynchronous Operations

« Asynchrony is a means of concurrent
programming where caller does not
block waiting for callee to complete

See en.wikipedia.org/wiki/Asynchrony (computer programming)

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

Overview of Asynchrony & Asynchronous Operations
« Asynchrony is a means of concurrent

_ CALLER CALLEE
programming where caller does not L searchForWord,
block waiting for callee to complete P ————— o
: : (1A future,
« An async call immediately returns a
. i searchForWord,
future & while the computation runs g |
“in the background” concurrently future,
searchForWord,

12) | [P fitaren

See en.wikipedia.org/wiki/Asynchronous method invocation

https://en.wikipedia.org/wiki/Asynchronous_method_invocation

Overview of Asynchrony & Asynchronous Operations
« Asynchrony is a means of concurrent

CALLER CALLEE
programming where caller does not ! searchForWord,
block waiting for callee to complete P ——————— dfISLAS
1A future,
» An async call immediately returns a searchForWord
future & while the computation runs | |
“in the background” concurrently 8} future,
. i.e., independent of the flow of ___searchoriords
control for the callee’s thread @ futures

See en.wikipedia.org/wiki/Control flow

https://en.wikipedia.org/wiki/Control_flow

Overview of Asynchrony & Asynchronous Operations

« Asynchrony is @ means of concurrent iy 9‘-“—'““‘*." | -
programming where caller does not ??tzirggg?‘iﬁ‘»‘:J;Q‘b“t‘iiﬁ" il pAle s SELe:
block waiting for callee to complete "™/ | e resuis

e e el
I write_result | |
E— Service |
B -
TCiient thread |
- The future is triggered when the _:_- |
computation completes | —
L ;|
1. Async
call runs

2. Client obtains result after
the computation completes

See upcoming lessons on “Overview of Java Futures”

Overview of Asynchrony & Asynchronous Operations

« Asynchrony is @ means of concurrent iy 9*‘—'““”3’ | -
programming where caller does not ??tzgggg?‘ia;?»‘:J;?E)‘Zf.iﬂ“ il pelbiln sl
block waiting for callee to complete ™ 0 | rewmresis

e R o es e
I write_result | |
— Service |

ey M -

« The future is triggered when the
computation completes

» The client may or may not block

awaiting the results, depending
on various factors

Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &
publishes results on the user-interface (UI) thread without having to

manipulate threads and/or handlers

AsyncTask
4. doInBackGround()
« 12$% 9597
i >
;;7 Executor

7
5. onProgressUpdate ()
/

6. onPostExecute ()

A(//////;T'execute(future)
/

2. onPreExecute ()

/4
_>§§ 1. execute (url)

See developer.android.com/reference/android/os/AsyncTask

https://developer.android.com/reference/android/os/AsyncTask

Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &
publishes results on the user-interface (UI) thread without having to

manipulate threads and/or handlers

Background thread(s) AsyncTask

» AsyncTask executes long-duration
operations asynchronously in one
or more background threads

4. doInBackGround()

D

v ':?g"é 95% 9?
;;7 Executor

7
5. onProgressUpdate ()
/

6. onPostExecute ()

A(//////;T>execute(future)
/

2. onPreExecute ()

7

_>§§ 1. execute (url)

10

Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &

publishes results on the user-interface (UI) thread without having to
manipulate threads and/or handlers

AsyncTask o

4. doInBackGround ()

Q i"%"é 959:’95

 Blocking operations in background | V4 Executor

threads don't block the caller
(e.g., UI) thread

7
5. onProgressUpdate ()
/

6. onPostExecute ()

A(//////;T>execute(future)
/

2. onPreExecute ()

7

_>§§ 1. execute (url)

N Calling thread
See developer.android.com/training/multiple-threads/communicate-ui

https://developer.android.com/training/multiple-threads/communicate-ui

Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &

publishes results on the user-interface (UI) thread without having to
manipulate threads and/or handlers

AsyncTask
4. doInBackGround()
V5% 959?’
i >
;;7 Executor

7
5. onProgressUpdate ()
/

6. onPostExecute ()

A(//////;T>execute(future)
/

2. onPreExecute ()

* The caller (UI) thread can be
notified upon completion, failure, | y
or progress of the async task | > 1. execute (url)

@
‘ ’ﬁ“ N Galling thread

v/

AsyncTask shields client code from details of programming futures

End of Overview
of Asynchrony &
Asynchronous Operations

13

& Gons of Asynchrony

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

EEE EEEEEREEEEE
) <

« Motivate the need for Java Future &
CompletableFuture mechanisms by
understanding the pros & cons of

asynchrony El @ﬂ@;@ﬂmuﬂlﬂm@

The Pros of Asynchrony

The Pros of Asynchrony

* Pros of asynchronous operations

NGox

05/ o/ a/a=b =N

L]
b
v

e

The Pros of Asynchrony

* Pros of asynchronous operations
« Responsiveness

A calling thread needn’t block waiting
for the async request to complete

See en.wikipedia.org/wiki/Asynchronous method invocation

https://en.wikipedia.org/wiki/Asynchronous_method_invocation

The Pros of Asynchrony

* Pros of asynchronous operations

« Elasticity

 Multiple requests can run scalably
& concurrently on multiple cores

‘See en.wikipedia.org/wiki/Elasticity (cloud comDutinq)l

https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)

The Pros of Asynchrony

* Pros of asynchronous operations

« Elasticity

 Multiple requests can run scalably
& concurrently on multiple cores

 Able to better leverage parallelism
available in multi-core systems

See headcrashing.wordpress.com/2015/07/20/iobound-completablefuture

https://headcrashing.wordpress.com/2015/07/20/iobound-completablefuture/

The Pros of Asynchrony
L

* Pros of asynchronous operations
« Elasticity

 Multiple requests can run scalably
& concurrently on multiple cores

« Elasticity is particularly useful
to auto-scale computations
in cloud environments

See en.wikipedia.org/wiki/Elasticity (cloud computing) & en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)
https://en.wikipedia.org/wiki/Autoscaling

The Cons of Asynchrony

The Cons of Asynchrony

« Cons of asynchronous operations

10

The Cons of Asynchrony

» Cons of asynchronous operations
 Unpredictability

» Response times may not unpredictable due
to non-determinism of async operations

/

Non-determinism is a general problem
with concurrency & not just asynchrony

See en.wikipedia.org/wiki/Nondeterministic algorithm

https://en.wikipedia.org/wiki/Nondeterministic_algorithm

The Cons of Asynchrony

« Cons of asynchronous operations

CALLER CALLEE
 Unpredictability !

searchForWord,

F-

T future;

searchForWord, 1

» Results can occur in a different order D — ftare, 1
than the original calls were made) future result, -
D L

() searchForWord;
e L

OUT OF e

future result; rL

H

) future result, -

L™ - L

\- v i i

Additional time & effort may be required if results must be ordered somehow

The Cons of Asynchrony

» Cons of asynchronous operations

« Complicated programming
& debugging

The Cons of Asynchrony

- Cons of asynchronous operations Parallel and Asynchronous Programming
in Java 8

Java 8 offered a boon to parallel and asynchronous programming. Let's check out the
lessons Java learned from JavaScript and how JDK 8 changed the game.

« Complicated programming e
& debugg i n g ‘lee (16) Comment‘(o) save Tweet |
« The patterns & best-practices
Of a syn C h rO n O u s p rog ra m m i n g zzr::fz:zs[)!j:e overcome the dangers of digital transformation, and learn why shifting left isn't enough. Read Now
are not well understood T ————

experienced developer, but Java 8 brought a lot of changes that should make this performance-boosting
trick a lot more manageable.

@ 45.66k Views

Download DZone's 2019 AppSec Trend Report to read about the future of secure programming, experience how

CompletableFuture

CompletableFuture implements both the ruture and the completionstage interface. ruture already existed pre-

Javas, but it wasn’t very developer-friendly by itself. You could only get the result of the asynchronous
computation by using the .get() method, which blocked the rest (making the async part pretty pointless
most of the time) and you needed to implement each possible scenario manually. Adding

the completionstage interface was the breakthrough that made asynchronous programming in Java
workable.

| —
— Completionstage is a promise, namely the promise that the computation will eventually be done. It contains
a bunch of methods that let you attach callbacks that will be executed on that completion. Now we can
handle the result without blocking.

——

There are two main methods that let you start the asynchronous part of your code: supplyasync if you want
to do something with the result of the method, and runasync if you don’t.

See dzone.com/articles/parallel-and-asynchronous-programming-in-java-8

https://dzone.com/articles/parallel-and-asynchronous-programming-in-java-8

The Cons of Asynchrony

« Cons of asynchronous operations s s

AF [lempryis moam
Loas S |
58 49 208 ‘wenr_saen' 1) ¢
A 10 00Nt "wner _pasavind mew')) {
AE (0_PORTE 'weny _panawond v’ | =se §_POBTY] "sase _password sepest) 4
Y C |. t d H A0 (onclenll PORY[‘saet _passvocd sew'l) » 3) {
Omp Ica e programmlng AF (ORslanis PORT] "antr tane 1) € 45 60 2ol 100 Teaar sapnt)) » 1) §
M (preg_sareh| S-ANVE I AL, 0 _POORL "eeer a1 (
H Fonar = poad_ster(f PORT| "wser_ssse I
& debugging A -
18 00aT) "waer _smali'
0 (e _roeT) o)

 The patterns & best-practices e st o s i) sy
of asynchronous programming

P ARSATONE ‘mag") = "Tou ate davw reginiaced a0 ploase
Meadec(Locet Low « T 00OVERLPRP SO I
J

Lo LT

are not well understood | oeton b - et et b bt Ve 4 G

} ohae Bang ~ ‘Tnarnane slrsady sxlsis
.) slee Tonyg » NAtaAne Sath B aaly s, AL, B2 Yy
A 1 H } o300 Tnag = "Denrtatse st b batenen 7 and 84 sharastars 'y
* ASYNC programming IS Py vl hnihocopesdrogiafiomyp-honduecry
) olee Feng = "Pasewords 40 sut sateh

tricky without proper Py il e

L E0REI0N] "meg) = feam

abstractions s

See dzone.com/articles/callback-hell

https://dzone.com/articles/callback-hell

The Cons of Asynchrony

» Cons of asynchronous operations

« Complicated programming
& debugging

« Errors can be hard to track
due to unpredictability

See www.jetbrains.com/help/idea/tutorial-java-debugging-deep-dive.html

http://www.jetbrains.com/help/idea/tutorial-java-debugging-deep-dive.html

The Cons of Asynchrony

» Cons of asynchronous operations

« Complicated programming
& debugging

« Errors can be hard to track
due to unpredictability

Again, non-determinism is a
general problem with concurrency
& not just with asynchrony

Weighing the Pros &
Cons of Asynchrony

18

Weighing the Pros & Cons of Asynchrony

« Two things are necessary for the pros
of asynchrony to outweigh the cons

19

Weighing the Pros & Cons of Asynchrony

« Two things are necessary for the pros
of asynchrony to outweigh the cons

« Performance should improve to
offset the increased complexity of
programming & debugging

Productivity

COMPLETABLE_FUTURES 1 executed in 312 msecs
COMPLETABLE_FUTURES _2 executed in 335 msecs Performa nce
PARALLEL_STREAM executed in 428 msecs

QUENTIA REAM execlted In 981 Msecs

COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES 1 executed in 83 msecs
PARALLEL STREAM executed in 102 msecs

\NTIA REAV msecs

QU FAM executed In

See upcoming lesson on “Java Completable Futures ImageStreamGang Example’

Weighing the Pros & Cons of Asynchrony

« Two things are necessary for the pros
of asynchrony to outweigh the cons Responsive

« An asynchronous programming l Resilient
model should reflect the key \ ,

principles of the reactive paradigm

Message-
driven

See earlier lesson on “ Overview of Reactive Programming'”

Weighing the Pros & Cons of Asynchrony

 Java’'s completable futures framework |Class CompletableFuture<T>
provides an asynchronous concurrent java ang Objec o
. java.util.concurrent.CompletableFuture<T>
programming model that performs A...J "
. . mplemented Interfaces:
well & supports the reactive paradigm |compietionstage<ts, Future<t>

public class CompletableFuture<T>
extends Object
implements Future<T>, CompletionStage<T>

A Future that may be explicitly completed (setting its value and
status), and may be used as a CompletionStage, supporting
dependent functions and actions that trigger upon its completion.

When two or more threads attempt to complete,
completeExceptionally, or cancel a CompletableFuture, only one
of them succeeds.

In addition to these and related methods for directly manipulating
status and results, CompletableFuture implements interface
CompletionStage with the following policies:

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

Weighing the Pros & Cons of Asynchrony

« Java’s completable futures framework
provides an asynchronous concurrent
programming model that performs
well & supports the reactive paradigm

« However, reactive streams frameworks
are even better suited to supporting
the reactive programming paradigm

Project
Reactor

See www.baeldung.com/rx-java & projectreactor.io

http://www.baeldung.com/rx-java
https://projectreactor.io/

End of Understanding the
Pros & Cons of Asynchrony

24

