
Overview of Synchrony &
Synchronous Operations

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand what synchrony &

synchronous operations are
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

3

Overview of Synchrony
& Synchronous Operations

4

• Method calls in Java programs are
largely synchronous

Overview of Synchrony & Synchronous Operations
CALLER CALLEE

blockingDownload1

blockingDownload2

blockingDownload3

return result1

return result2

return return3

e.g., calls on Java collections & behaviors in Java stream aggregate operations

5

• Method calls in Java programs are
largely synchronous
• i.e., a callee borrows the thread of

its caller until its computation(s) finish

Overview of Synchrony & Synchronous Operations
CALLER CALLEE

blockingDownload1

blockingDownload2

blockingDownload3

return result1

return result2

return return3

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

6

• Method calls in Java programs are
largely synchronous
• i.e., a callee borrows the thread of

its caller until its computation(s) finish

Overview of Synchrony & Synchronous Operations
CALLER CALLEE

blockingDownload1

blockingDownload2

blockingDownload3

return result1

return result2

return return3

blockingDownload3

return result1

return result2

return return3

Note “request/response”
nature of these calls

See en.wikipedia.org/wiki/Request-response

blockingDownload2

blockingDownload1

https://en.wikipedia.org/wiki/Request%E2%80%93response

7

• Method calls in Java programs are
largely synchronous
• i.e., a callee borrows the thread of

its caller until its computation(s) finish

Overview of Synchrony & Synchronous Operations
void processStream() {
 List<Image> filteredImages =
 getInput()
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::blockingDownload)
 .mapMulti(this::applyFilters)
 .toList();

 System.out.println(TAG
 + "Image(s) filtered = "
 + filteredImages.size());
}

Return an output stream
consisting of the images that
were downloaded from the
URLs in the input stream

See “Implementing Behaviors in the Java Parallel ImageStreamGang Case Study”

8

• Method calls in Java programs are
largely synchronous
• i.e., a callee borrows the thread of

its caller until its computation(s) finish

Overview of Synchrony & Synchronous Operations
void processStream() {
 List<Image> filteredImages =
 getInput()
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::blockingDownload)
 .mapMulti(this::applyFilters)
 .toList();

 System.out.println(TAG
 + "Image(s) filtered = "
 + filteredImages.size());
}

Image blockingDownload
 (URL url) {
 return BlockingTask
 .callInManagedBlock
 (() ->
 downloadImage(url));
}

Transform URL to an Image by
downloading each image via its URL

See livelessons/streams/ImageStreamParallel.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

9

• Method calls in Java programs are
largely synchronous
• i.e., a callee borrows the thread of

its caller until its computation(s) finish

Overview of Synchrony & Synchronous Operations
void processStream() {
 List<Image> filteredImages =
 getInput()
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::blockingDownload)
 .mapMulti(this::applyFilters)
 .toList();

 System.out.println(TAG
 + "Image(s) filtered = "
 + filteredImages.size());
}

See lesson on “The Java Fork-Join Pool: Applying the ManagedBlocker Interface”

Image blockingDownload
 (URL url) {
 return BlockingTask
 .callInManagedBlock
 (() ->
 downloadImage(url));
}

“Managed blocker” ensures enough
threads in the common fork-join pool

10

• Method calls in Java programs are
largely synchronous
• i.e., a callee borrows the thread of

its caller until its computation(s) finish

Overview of Synchrony & Synchronous Operations
void processStream() {
 List<Image> filteredImages =
 getInput()
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::blockingDownload)
 .mapMulti(this::applyFilters)
 .toList();

 System.out.println(TAG
 + "Image(s) filtered = "
 + filteredImages.size());
}

Image blockingDownload
 (URL url) {
 return BlockingTask
 .callInManagedBlock
 (() ->
 downloadImage(url));
}

See livelessons/streams/ImageStreamGang.java

Synchronously downloads content
from URL & converts it into an image

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamGang.java

11

End of Overview
of Synchrony &

Synchronous Operations

Understanding the
Pros & Cons of Synchrony

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand what synchrony &

synchronous operations are
• Motivate the need for Java Future &

CompletableFuture mechanisms by
understanding the pros & cons of
synchrony

3

The Pros of Synchrony

4

• Pros of synchronous calls
The Pros of Synchrony

5

• Pros of synchronous calls
• “Intuitive” to program & debug

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

6

• Pros of synchronous calls
• “Intuitive” to program & debug, e.g.
• Maps onto common two-way method patterns

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See www.iro.umontreal.ca/~keller/Layla/remote.pdf

http://www.iro.umontreal.ca/~keller/Layla/remote.pdf

7

• Pros of synchronous calls
• “Intuitive” to program & debug, e.g.
• Maps onto common two-way method patterns
• Local caller state retained when callee returns

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See wiki.c2.com/?ActivationRecord

http://wiki.c2.com/?ActivationRecord

8

• Pros of synchronous calls
• “Intuitive” to program & debug, e.g.
• Maps onto common two-way method patterns
• Local caller state retained when callee returns

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See Java8/ex20/src/main/java/utils/FileAndNetUtils.java

byte[] downloadContent(URL url) {
 byte[] buf = new byte[BUFSIZ];
 ByteArrayOutputStream os =
 new ByteArrayOutputStream();

 try(InputStream is = url
 .openStream()) {
 for (int bytes;
 (bytes = is.read(buf)) > 0;)
 os.write(buf, 0, bytes); ...

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex20/src/main/java/utils/FileAndNetUtils.java

9

The Cons of Synchrony

10

• Cons of synchronous calls
The Cons of Synchrony

11

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems

The Cons of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See mincong.io/2020/06/26/completable-future

https://mincong.io/2020/06/26/completable-future/

12

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• e.g., synchronization,

context switching, data
movement, & memory
management costs

The Cons of Synchrony

Theory

Practice

13

The Cons of Synchrony

Efficient
Resource
Utilization

Efficient
Performance

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard
List<Image> filteredImages = urls
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::downloadImage)
 .mapMulti(this::applyFilters)
 .toList();

Image downloadImage(URL url){
 return new Image
 (url,
 downloadContent
 (url));
}

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

14

The Cons of Synchrony
• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard

Efficient
Resource
Utilization

Efficient
Performance

List<Image> filteredImages = urls
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::downloadImage)
 .mapMulti(this::applyFilters)
 .toList();

A large # of threads may help to improve
performance, but can also waste resources

15

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard

The Cons of Synchrony

List<Image> filteredImages = urls
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::downloadImage)
 .mapMulti(this::applyFilters)
 .toList(); A small # of threads may conserve

resources at the cost of performance

Efficient
Resource
Utilization

Efficient
Performance

16

The Cons of Synchrony
• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard

Particularly tricky for I/O-
bound programs that need

more threads to run efficiently

Efficient
Resource
Utilization

Efficient
Performance

17

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• May need to change the size of

the common fork-join pool

The Cons of Synchrony

See lesson on “The Java Fork-Join Pool: Maximizing Core Utilization w/the Common Fork-Join Pool”

18

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• May need to change the size of

the common fork-join pool, e.g.
• Set a system property

The Cons of Synchrony
String desiredThreads = "10";
System.setProperty
 ("java.util.concurrent." +
 "ForkJoinPool.common." +
 "parallelism",
 desiredThreads);

It’s hard to estimate the total # of threads to set in the common fork-join pool

19

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• May need to change the size of

the common fork-join pool, e.g.
• Set a system property
• Or use the ManagedBlocker

to increase common pool size
automatically/temporarily

The Cons of Synchrony

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

ManageBlockers can only be used
with the common fork-join pool..

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

20

End of Understanding the
Pros & Cons of Synchrony

