Overview of Java Futures (Part 1)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Class>>
(® CompletableFuture<T>

« Understand that Java futures
provide the foundation for Java
completable futures

ol i

<<Java Interface>>
& Future<V>

@ cancel(boolean):boolean
@ isCancelled():boolean

= Haaleliarielic
@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean
@ get()
@ get(long, TimeUnit)

© complete(T):boolean
@ supplyAsync(Supplier<U>):CompletableFuture<U>

@ supplyAsync(Supplier<U> Executor):CompletableFuture<U>

@’ runAsync(Runnable):CompletableFuture<Void>

@'runAsync(Runnable, Executor):CompletableFuture<Void>

@ completedFuture(U):CompletableFuture<U>

@ thenApply(Function<?>):CompletableFuture<U>

@ thenAccept(Consumer<? super T=):CompletableFuture<Void>

© thenCombine(CompletionStage<? extends U= BiFunction<?>):CompletableFuture<V=>
@ thenCompose(Function<?=):CompletableFuture<U=

© whenComplete(BiConsumer<?=):CompletableFuture<T>

& allOf(CompletableFuture[]<?>):CompletableFuture<Void=>

@ anyOf(CompletableFuture[]<?>):CompletableFuture<Object>

@ isDone():boolean
@ get()
@ get(long, TimeUnit)

See en.wikipedia.org/wiki/Java version history



https://en.wikipedia.org/wiki/Java_version_history

Learning Objectives in this Part of the Lesson

« Understand that Java futures
provide the foundation for Java
completable futures

» Recognize a human known
use of Java futures




A Human Known Use
of Java Futures




A Human Known Use of Java Futures
A future is essentially a proxy that represents the result(s) of an async call

Resu]t get_result ()

begln
/ ## Suspend calling thread until result is available.
/ if (result == NULL) then
_____ . / thread.wait ();
Cllent thread Future fx return result;
I E end
get result | | ——— — — — - "
r . 1
Service thread

|
|
I Client | write_result |

-

Deblgn Pattemb s T T T TN T
2. Result obtained only after w 1. The async
async computation completes computation runs

See en.wikipedia.org/wiki/Proxy pattern & en.wikipedia.org/wiki/Futures and promises



https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Futures_and_promises

A Human Known Use of Java Futures

« Table tent #'s & table # stands a human-
known-use of futures in restaurants! I 8

) ]5
: 112

12

i I I I

—

\_J

b N

See www.citygrafx.com/table-numbers-table-markers



http://www.citygrafx.com/table-numbers-table-markers

A Human Known Use of Java Futures

« Table tent #'s & table # stands a human-
known-use of futures in restaurants!

« e.g., McDonald’s vs Wendy’s model of
preparing fast food

McDonald’s’

[ OLD FASHIONED

AMBURGERS.




A Human Known Use of Java Futures

« Table tent #'s & table # stands a human-
known-use of futures in restaurants!

« e.g., McDonald’s vs Wendy’s model of
preparing fast food

McDonald’s’

J A
/

McDonald'’s historically ‘cached”
food in heatlamps & performed
“synchronous” transactions

See www.latimes.com/archives/la-xpm-1998-mar-27-fi-33150-story.html



https://www.latimes.com/archives/la-xpm-1998-mar-27-fi-33150-story.html

A Human Known Use of Java Futures

Table tent #'s & table # stands a human-
known-use of futures in restaurants!

* e.g., McDonald’s vs Wendy’s model of gl
preparing fast food Wﬂnngs

OLD FASHIONED

HAMBURGERS.

Wendy's historically cooked food to
order & performed "asynchronous”
transactions with various futures

See www.wendys.com/csr-what-we-value/food/quality/fresh



http://www.wendys.com/csr-what-we-value/food/quality/fresh

End of Overview
of Java Futures (Part 1)

10



Overview of Java Futures (Part 2)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Interface>>
€ Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

« Understand that Java futures
provide the foundation for Java
completable futures

 Know all the methods in
the Future interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

Overview of the
Java Future API




Overview of the Java Future API

« Java 5 added async call support
via the Java Future interface

JAVASE 9
Was released on date: 21st
September 2017

Project Jigsaw: designing
and Implementing a
standard, module system
for the Java SE platform,
and to apply that system to
the platform itself and the
JOK.

JAVA SE 10
Released Date- 20th
March contains additions
like Additional Unicode
language-tag
extensions, Root
certificates, Thread-local
handshakes, Heap
allocation on alternative
memory devices

JDK1.0 J2sE12

Very first verslon was *Play area" was
released on January 23,
1996. The principal
stable variant, JDK 1.0.2,
is called Java 1.

JDK 11 was released on
February 191997,
graphical

JAVA SE 8

Was released on date
18th March ,2014
Language level support
for lambda expressions
and default methods and
a new date and time API
inspired by Joda Time.

JAVA SE 11

Released Date- 25th
September,2018
contains additions like
Dynamic class-file
constants, Epsllon: a
no-op garbage collector,

codename which was given
to this form and was
released on 8th December,
1998.Its real expansion
Included:

strictfp keyword, the Swing

“Dolphin® and was released

changes including strings In

J2SE13

Was glven a codename
“KESTREL" and was
released date 8th May,2000
and contains additions like
HotSpot, JVM included,
Java Naming and Directory
Interface

the

API

JAVA SE 7
Was glven the codename

JAVA SE 6

Was given the
codename “Mustang”
and was released on
date 11th
December,2006
Packaged with a
database supervisor and
encourages the
utilization of scripting

on date 7th July 201
Added small language

switch. The JVM was
extended with support for
dynamic languages.

JAVA SE 12
Released Date- 19th
Macrh,2019 contains
additions like
Shenandoah: A
Low-Pause-Time
Garbage Collector

I-variable syntax for
lambda

Suite,

Low-overhead heap
profiling)

Switch Expressions
(Preview), JVM
Constants API

J2SE14
Was given the codename
“Merlin" and was released
on date 6th February,2002
and contains additions like
Library improvements,
Regular expressions
modelled after Perl regular
expressions

J2SE 5.0
Was given the
codename “Tiger” and
was released on 30th
September,2004
originally numbered as
1.5 which Is still used as
its Internal version.
Added several new
language features such
as for-each loop

See www.geeksforgeeks.org/the-complete-history-of-java-programming-language



https://www.geeksforgeeks.org/the-complete-history-of-java-programming-language

Overview of the Java Future API

« A Future represents the result of an asynchronous <<Java Interface>>
computation © Future<V>

@ cancel(boolean):boolean

@ isCancelled():boolean
@ isDone():boolean
@ get()
Methods are provided to check if the @ get(long, TimeUnit)
computation is complete, to wait for its
completion, & to retrieve the result

‘ See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html |



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

Overview of the Java Future API

 Java Future methods can manage a task’s lifecycle
after it's submitted to run asynchronously

ThreadPoolExecutor

<<Java Interface>>
&9 Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

Thread
(main thread)

%

WorkQueue @
callable eg ’
S5.C o
callable egéé Future
Fixed : -
callable WorkerThreads ﬁ:B'gFractm“
=
\/ 4.take () 2. Return future
3.o0ffer() e
— 1l.submit (task) | callable

6




Overview of the Java Future API

 Java Future methods can manage a task’s lifecycle

after it's submitted to run asynchronously, e.g.

« A future can be tested for completion

<<Java Interface>>
€ Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean
@ get()
@ get(long, TimeUnit)

e

ThreadPoolExecutor

WorkQueue @ if (future.isDone())
callable eg .
S5 o
callable eéeé Future \
Fixed : - .isD
callable WorkerThreads /@& 6 lsS One()
— \
< 4. take() 2. Return future Thread
\ 5.run() ) / (main thread)
3.0ffer () . p
submit) 1< 1 submit (task) [ callable

7




Overview of the Java Future API

 Java Future methods can manage a task’s lifecycle T e
after it's submitted to run asynchronously, e.g. @ Future<V>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean
@ get()

@ get(long, TimeUnit)

A future be tested for cancellation & cancelled

WorkQueue @ if (!'future.isCancelled())

future.cancel() ;
callable

callable eéeé Future \
Fixed - - 6. 1
callable WorkerThreads BigFraction f&w__ cancel ()
— / \
< 4.take()

Thread

~_ / 2. Return future _ _é
3.o0ffer ()

it() (&
submit() 1.submit (task) | callable

ThreadPoolExecutor

8



Overview of the Java Future API

 Java Future methods can manage a task’s lifecycle
after it's submitted to run asynchronously, e.g.

« A future can retrieve a two-way task’s result

WorkQueue

callable

callable

callable

S~

3.o0ffer ()

Fixed
WorkerThreads

&« 4.take()

5.run()

ResultType result
= future.get();

Future

BigFraction & 6. get ()
/ ll: \

<<Java Interface>>
€ Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()
@ get(long, TimeUnit)

Thread

e

/ 2. Return future _
/ (main thread)

submit() €

1.submit (task) | callable

ThreadPoolExecutor

9




Overview of the Java Future API

. . <<Java Class>>

« The Java Fu_ture interface provides © CompletableFuture<T>
the foundation for the Java
CompletableFuture class e o

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

@ complete(T):boolean

@ supplyAsync(Supplier<U>):CompletableFuture<U>

& supplyAsync(Supplier<U> Executor):CompletableFuture<U>
@’ runAsync(Runnable):CompletableFuture<Void>
@'runAsync(Runnable, Executor):CompletableFuture<Void>

@ completedFuture(U):CompletableFuture<U>

@ thenApply(Function<?>):CompletableFuture<U>

@ thenAccept(Consumer<? super T=):CompletableFuture<Void>
© thenCombine(CompletionStage<? extends U= BiFunction<?>):CompletableFuture<V=>
@ thenCompose(Function<?=):CompletableFuture<U=

© whenComplete(BiConsumer<?=):CompletableFuture<T>

& allOf(CompletableFuture[]<?>):CompletableFuture<Void=>

@ anyOf(CompletableFuture[]<?>):CompletableFuture<Object>

<<Java Interface>>
& Future<V>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean
@ get()
@ get(long, TimeUnit)

See en.wikipedia.org/wiki/Java version history



https://en.wikipedia.org/wiki/Java_version_history

Overview of the Java Future API

. . <<Java Class>>
« The Java Fu_ture interface provides e
the foundation for the Java & CompletableFutare)
CompletableFuture class e o
isDone():boolean
However, the CompletableFuture |- g

class defines dozens of methods
& more powerful capabilities

W W T

@ complete(T):boolean
GssupplyAsync(SuppIier<U>):CompletabIeFuture<U>
& supplyAsync(Supplier<U> Executor):CompletableFuture<U>

@’ runAsync(Runnable):CompletableFuture<Void>

@'runAsync(Runnable, Executor):CompletableFuture<Void>

@ completedFuture(U):CompletableFuture<U>

/|| @ thenApply(Function<?=):CompletableFuture<U=

@ thenAccept(Consumer<? super T=):CompletableFuture<Void>

© thenCombine(CompletionStage<? extends U= BiFunction<?>):CompletableFuture<V=>
© thenCompose(Function<?>):CompletableFuture<U=

] whenCompIete(B|Consumer<?>) CompletableFuture<T>
@ aIIOf(CompIetabIeFuture[]<?>) CompletableFuture<Vond>

<<Java Interface>>
© Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean
@ isDone():boolean
© get()
—— © get(long, TimeUnit)

See upcoming lessons on the completable futures framework




End of Overview
of Java Futures (Part 2)

12



