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Learning Objectives in this Part of the Lesson

» Benchmark the performance & evaluate the results
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Printing 3 results from fastest to slowest
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See github.com/douglascraigschmidt/LivelLessons/tree/master/Folders/ForkJoin
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Benchmarking the
FileCounter Case Study




Benchmarking the FileCounter Case Study

The benchmark results on my 10-core 64GB MacBook Pro are interesting,
though your mileage may vary
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See en.wiktionary.org/wiki/your mileage may vary
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Evaluating the Various Java Parallel Programming Models

If_the goal is to simplify par_aIIeI processing &+ AbstractFileCounter
without much concern for fine-grained ,
f mDocumentCount AtomicLong
control, the Java Parallel Streams model ,
. . f mFolderCount AtomicLong
is @ good choice D ¢ mFile File
m ‘= documentCount() long
m ‘i folderCount() long
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c FileCounterParallelStream

m ¢ compute() Long




Evaluating the Various Java Parallel Programming Models

¢ = AbstractFileCounter

f mDocumentCount AtomicLong

f mFolderCount AtomicLong

f mFile File

» For recursive tasks or when there's a need | & « documentCount() long

for more control over the parallelism, the m  folderCount() long
Java Fork-Join model is suitable T

 Also doesn’t require any modern Java
features/JDK/JRE ¢ = FileCounterForkJoinTask
m ¢ compute() Long




Evaluating the Various Java Parallel Programming Models

c AbstractFileCounter

f mDocumentCount AtomicLong
f mFolderCount AtomicLong
f mFile File
m ‘= documentCount() long
m ‘i folderCount() long

T

¢ = FileCounterSequentialStreamTask

« When a blend of simplicity & control
is desired, the combining Sequential
Streams with Fork-Join is a balanced m ¢ compute() Long

approach




End of the FileCount
Case Study:
FileCounterParallelStream
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