The FileGCount Gase Study:

Performance & Evaluation

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Benchmark the performance & evaluate the results

@ [] ForkJoin — Main.java [ForkJoin.main]

ForkJoin) src) main) java) € Main) im runFileCounterParallelStream & N ForkJoin ¥ > ¥ G G ~ Gitt ¥ v A o Q >
§ Project EB z = a — e Main.java € FileCounterForkJoinTask.java €/ AbstractFileCounter.java € FileCounterParallelStream.java € FileCounterSequentialStreamTask.java '3
:Q Run: ForkJoin [:Main.main()] o - g«:

» |V . . = £
£ P Starting the file counter program T 2

E 2

E ParallelStream: 21721 files (14370 documents and 7351 folders) contained 52701940 bytes -
@

; ForkJoinTask: 21721 files (14370 documents and 7351 folders) contained 52701940 bytes g
2@ s < s
g SequentialStreamTask: 21721 files (14370 documents and 7351 folders) contained 52701940 bytes s
o= - o
: .
I 2 . g

Printing 3 results from fastest to slowest

2 ForkJoinTask executed in 92 msecs ?
E ParallelStream executed in 131 msecs 8
P SequentialStreamTask executed in 161 msecs g
£
& &
n Ending the file counter program 2

P Git P Run (=TODO O Problems Terminal ~ G Profiler G CodeWhisperer Reference Log © services N\ Build £ Dependencies & App Inspection = Logcat)
IZ] * daemon started successfully (yesterday 8:46 PM) AWS: No credentials selected + CodeWhisperer 23:1 CRLF UTF-8 4 spaces]J master ‘i

See github.com/douglascraigschmidt/LivelLessons/tree/master/Folders/ForkJoin

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Folders/ForkJoin

Benchmarking the
FileCounter Case Study

Benchmarking the FileCounter Case Study

The benchmark results on my 10-core 64GB MacBook Pro are interesting,
though your mileage may vary

@ [] ForkJoin - Main.java [ForkJoin.main]

ForkJoin) src) main java € Main # m runFileCounterParallelStream X AN Forkloin v | P # @ G ~ Git: ¥ v A o Q >
‘g Project @ z = o — 4 Main.java € FileCounterForkJoinTask.java € AbstractFileCounter.java € FileCounterParallelStream.java € FileCounterSequentialStreamTask.java '3
:g Run: ForkJoin [:Main.main()] o — gZ;:

> | . . = |5

£ P Starting the file counter program ? 2
£ EY

ﬁ ParallelStream: 21721 files (14370 documents and 7351 folders) contained 52701940 bytes @

@

) ForkJoinTask: 21721 files (14370 documents and 7351 folders) contained 52701940 bytes &
a2 © . & 5
§ it SequentialStreamTask: 21721 files (14370 documents and 7351 folders) contained 52701940 bytes =
@ me o
t N g

Printing 3 results from fastest to slowest

§ FOPkJOinTaSk exeCUted in 92 nsecs @ YOUR MILEAGE ?
ﬁ ParallelStream executed in 131 msecs - g
P SequentialStreamTask executed in 161 msecs @ MAY VARY g
£
= &
n Ending the file counter program 3

PGt » Run :=TODO O Problems Terminal @ Profiler & CodeWhisperer Reference Log © services N\ Build ¥ Dependencies & App Inspection = Logcat)
IC] * daemon started successfully (yesterday 8:46 PM) AWS: No credentials selected + CodeWhisperer 23:1 CRLF UTF-8 4 spaces P master ‘i

See en.wiktionary.org/wiki/your mileage may vary

https://en.wiktionary.org/wiki/your_mileage_may_vary

Evaluating the Various Java
Parallel Programming Models

Evaluating the Various Java Parallel Programming Models

If_the goal is to simplify par_aIIeI processing &+ AbstractFileCounter
without much concern for fine-grained ,
f mDocumentCount AtomicLong
control, the Java Parallel Streams model ,
. . f mFolderCount AtomicLong
is @ good choice D ¢ mFile File
m ‘= documentCount() long
m ‘i folderCount() long

T

c FileCounterParallelStream

m ¢ compute() Long

Evaluating the Various Java Parallel Programming Models

¢ = AbstractFileCounter

f mDocumentCount AtomicLong

f mFolderCount AtomicLong

f mFile File

» For recursive tasks or when there's a need | & « documentCount() long

for more control over the parallelism, the m folderCount() long
Java Fork-Join model is suitable T

 Also doesn’t require any modern Java
features/JDK/JRE ¢ = FileCounterForkJoinTask
m ¢ compute() Long

Evaluating the Various Java Parallel Programming Models

c AbstractFileCounter

f mDocumentCount AtomicLong
f mFolderCount AtomicLong
f mFile File
m ‘= documentCount() long
m ‘i folderCount() long

T

¢ = FileCounterSequentialStreamTask

« When a blend of simplicity & control
is desired, the combining Sequential
Streams with Fork-Join is a balanced m ¢ compute() Long

approach

End of the FileCount
Case Study:
FileCounterParallelStream

9

