
The FileCount Case Study: Overview
Douglas C. Schmidt

 d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand the design of the FileCounter case study
• Evaluates different Java parallel programming models in practice

Learning Objectives in this Part of the Lesson

Parallel StreamsFork-Join Pool

3

Overview of the
FileCounter Case Study

4

Overview of the FileCounter Case Study

See github.com/douglascraigschmidt/LiveLessons/tree/master/Folders/ForkJoin

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Folders/ForkJoin

5

Overview of the FileCounter Case Study

See Folders/ForkJoin/src/main/java/Main.java

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• Main
• Evaluates three Java parallel

programming models
• e.g., fork-join framework &

sequential/parallel streams

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Folders/ForkJoin/src/main/java/Main.java

6

Overview of the FileCounter Case Study

See Folders/ForkJoin/src/main/java/Main.java

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• Main
• Evaluates three Java parallel

programming models
• Counts all the files in a recursive

folder hierarchy & calculates
cumulative sizes of files

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Folders/ForkJoin/src/main/java/Main.java

7

Overview of the FileCounter Case Study

See Folders/ForkJoin/src/main/java/counters/AbstractFileCounter.java

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• AbstractFileCounter
• Provides foundational functionality for

subclasses that compute the size of
files in folders

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Folders/ForkJoin/src/main/java/counters/AbstractFileCounter.java

8

Overview of the FileCounter Case Study

See en.wikipedia.org/wiki/Abstraction_layer

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• AbstractFileCounter
• Provides foundational functionality for

subclasses that compute the size of
files in folders

• This “abstraction layer” offers common
methods & fields shared among the
various FileCounter implementations

https://en.wikipedia.org/wiki/Abstraction_layer

9

Overview of the FileCounter Case Study

See Folders/ForkJoin/src/main/java/counters/FileCounterForkJoinTask.java

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• FileCounterForkJoinTask
• Applies the Java fork-join framework

& Java 7 features to compute size
of a folder & all reachable files

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Folders/ForkJoin/src/main/java/counters/FileCounterForkJoinTask.java

10

Overview of the FileCounter Case Study

See en.wikipedia.org/wiki/Divide-and-conquer_algorithm

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• FileCounterForkJoinTask
• Applies the Java fork-join framework

& Java 7 features to compute size
of a folder & all reachable files

• Best used for recursive tasks that
can be split into smaller sub-tasks
• i.e., divide-and-conquer algorithms

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

11

Overview of the FileCounter Case Study

See Folders/ForkJoin/src/main/java/counters/FileCounterSequentialStreamTask.java

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• FileCounterSequentialStreamTask
• Applies the Java fork-join framework

& sequential streams to compute the
size of a folder & all reachable files

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Folders/ForkJoin/src/main/java/counters/FileCounterSequentialStreamTask.java

12

Overview of the FileCounter Case Study

See www.oracle.com/technical-resources/articles/java/ma14-java-se-8-streams.html

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• FileCounterSequentialStreamTask
• Applies the Java fork-join framework

& sequential streams to compute the
size of a folder & all reachable files

• Best used when the simplicity of
streams is desired along with the
control of managing parallelism
using the fork-join framework

http://www.oracle.com/technical-resources/articles/java/ma14-java-se-8-streams.html

13

Overview of the FileCounter Case Study

See Folders/ForkJoin/src/main/java/counters/FileCounterParallelStream.java

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• FileCounterParallelStream
• Applies Java parallel streams to

compute size of a folder & all
reachable files

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Folders/ForkJoin/src/main/java/counters/FileCounterParallelStream.java

14

Overview of the FileCounter Case Study

See www.baeldung.com/java-when-to-use-parallel-stream

• Different Java parallel programming models are applied on common data &
benchmarked to determine tradeoffs between conciseness & performance
• FileCounterParallelStream
• Applies Java parallel streams to

compute size of a folder & all
reachable files

• Best used when data-level parallelism
is desired, especially when working
with collections
• Parallel streams abstract away low-

level threading details

http://www.baeldung.com/java-when-to-use-parallel-stream

15

End of the FileCounter
Case Study: Overview

