
Overview of the Java Fork-Join
Framework’s ManagedBlocker Interface

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how the common fork-join
pool helps to maximize processor core
utilization

• Recognize how the ManagedBlocker
interface helps avoid starvation &
improve performance

Learning Objectives in this Part of the Lesson

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

3

• Understand how the common fork-join
pool helps to maximize processor core
utilization

• Recognize how the ManagedBlocker
interface helps avoid starvation &
improve performance
• This mechanism isn’t limited to

the Java common fork-join pool

Learning Objectives in this Part of the Lesson

4

Overview of the Managed
Blocker Mechanism

5

Overview of the ManagedBlocker Mechanism
• The Java fork-join framework is largely

designed for tasks that “run to completion”
without blocking

See en.wikipedia.org/wiki/Run_to_completion_scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

6

Overview of the ManagedBlocker Mechanism
• The Java fork-join framework is largely

designed for tasks that “run to completion”
without blocking
• However, many apps perform blocking

operations
• e.g., for I/O, synchronizers, bounded-

buffer queues, etc.

See www.geeksforgeeks.org/blocking-methods-in-java

http://www.geeksforgeeks.org/blocking-methods-in-java

7

Overview of the ManagedBlocker Mechanism
• The ManagedBlocker mechanism is

designed to handles cases where
more worker threads may be needed
to ensure liveness/responsiveness for
blocking operations in a ForkJoinPool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

8

Overview of the ManagedBlocker Mechanism
• The ManagedBlocker mechanism is

designed to handles cases where
more worker threads may be needed
to ensure liveness/responsiveness for
blocking operations in a ForkJoinPool
• e.g., to automatically/temporarily

increase common fork/join pool size

9

• The ManagedBlocker mechanism
can be used with any instance of
Java fork-join pool

Overview of the ManagedBlocker Mechanism
public static void managedBlock
 (ManagedBlocker blocker) ... {
 Thread t; ForkJoinPool p;
 if ((t = Thread.currentThread())
 instanceof
 ForkJoinWorkerThread &&
 (p = ((ForkJoinWorkerThread)t)
 .pool) != null)
 p.compensatedBlock
 (blocker);
 else
 unmanagedBlock(blocker);
}

See src/share/classes/java/util/concurrent/ForkJoinPool.java

This method checks if the current
thread is a ForkJoinWorkerThread
& if so, it blocks on that thread's
associated ForkJoinPool instance

https://github.com/frohoff/jdk8u-jdk/blob/master/src/share/classes/java/util/concurrent/ForkJoinPool.java

10

Overview of the ManagedBlocker Mechanism
• The common ForkJoinPool reclaims

threads during periods of non-use
& reinstates them on later use

11

Overview of the ManagedBlocker Mechanism
• The common ForkJoinPool reclaims

threads during periods of non-use
& reinstates them on later use
• It also tries to create or activate

threads to ensure the target level
of parallelism is met

12

Overview of the
ManagedBlocker Interface

13

Overview of the ManagedBlocker Interface
• ManagedBlocker defines two methods interface ManagedBlocker {

 boolean isReleasable();

 boolean block();
}

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

14

Overview of the ManagedBlocker Interface
• ManagedBlocker defines two methods
• Returns true if blocking is unnecessary

interface ManagedBlocker {
 boolean isReleasable();

 boolean block();
}

e.g., was able to acquire a lock
or a message without blocking

15

Overview of the ManagedBlocker Interface
• ManagedBlocker defines two methods
• Returns true if blocking is unnecessary
• Possibly blocks the calling thread

interface ManagedBlocker {
 boolean isReleasable();

 boolean block();
}

e.g., waiting for a
lock or I/O operation

16

Overview of the ManagedBlocker Interface
• ManagedBlocker defines two methods
• Returns true if blocking is unnecessary
• Possibly blocks the calling thread
• Returns true if no additional

blocking is necessary

interface ManagedBlocker {
 boolean isReleasable();

 boolean block();
}

i.e., if isReleasable()
would return true

17

How the Java Fork-Join Pool
Applies ManagedBlocker

18

How the Java Fork-Join Pool Applies ManagedBlocker
• The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
 ...
 static void managedBlock(ManagedBlocker blocker) {
 ...
 while (!blocker.isReleasable()) {
 if (p.tryCompensate(p.ctl)) {
 ...
 do {}
 while (!blocker.isReleasable()
 && !blocker.block());
 ...
 }
 ...

See openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

19

How the Java Fork-Join Pool Applies ManagedBlocker
• The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
 ...
 static void managedBlock(ManagedBlocker blocker) {
 ...
 while (!blocker.isReleasable()) {
 if (p.tryCompensate(p.ctl)) {
 ...
 do {}
 while (!blocker.isReleasable()
 && !blocker.block());
 ...
 }
 ...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Implements the ExecutorService interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

20

How the Java Fork-Join Pool Applies ManagedBlocker
• The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
 ...
 static void managedBlock(ManagedBlocker blocker) {
 ...
 while (!blocker.isReleasable()) {
 if (p.tryCompensate(p.ctl)) {
 ...
 do {}
 while (!blocker.isReleasable()
 && !blocker.block());
 ...
 }
 ...

This method activates a
spare thread to ensure

sufficient parallelism while
calling thread is blocked

See openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

21See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

How the Java Fork-Join Pool Applies ManagedBlocker
• The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
 ...
 static void managedBlock(ManagedBlocker blocker) {
 ...
 while (!blocker.isReleasable()) {
 if (p.tryCompensate(p.ctl)) {
 ...
 do {}
 while (!blocker.isReleasable()
 && !blocker.block());
 ...
 }
 ...

Interface for extending
managed parallelism for tasks

running in ForkJoinPools

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

22

How the Java Fork-Join Pool Applies ManagedBlocker
• The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
 ...
 static void managedBlock(ManagedBlocker blocker) {
 ...
 while (!blocker.isReleasable()) {
 if (p.tryCompensate(p.ctl)) {
 ...
 do {}
 while (!blocker.isReleasable()
 && !blocker.block());
 ...
 }
 ...

If there aren’t enough live
threads, create or re-activate a
spare thread to compensate for
blocked joiners ‘til they unblock

23

How the Java Fork-Join Pool Applies ManagedBlocker
• The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
 ...
 static void managedBlock(ManagedBlocker blocker) {
 ...
 while (!blocker.isReleasable()) {
 if (p.tryCompensate(p.ctl)) {
 ...
 do {}
 while (!blocker.isReleasable()
 && !blocker.block());
 ...
 }
 ...

First attempt to acquire the
resource without blocking

24

How the Java Fork-Join Pool Applies ManagedBlocker
• The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
 ...
 static void managedBlock(ManagedBlocker blocker) {
 ...
 while (!blocker.isReleasable()) {
 if (p.tryCompensate(p.ctl)) {
 ...
 do {}
 while (!blocker.isReleasable()
 && !blocker.block());
 ...
 }
 ...

May block the calling thread

25

End of Overview of the Java
Fork-Join Framework’s

ManagedBlocker Interface

