Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand how the common fork-join pool
helps to maximize processor core utilization

Common Fork-Join Pool

Deque

Sub-Task, ,

Sub-Task, 3

Sub-Task, 4 fpef™

Deque

Sub-Task; 5

" SUb-TaSk34

-~

Overview of the
Common Fork-Join Pool

Overview of the Common Fork-Join Pool

« A static common pool is available
& appropriate for most programs

commonPool

public static ForkJoinPool commonPool()

Returns the common pool instance. This pool is statically
constructed; its run state is unaffected by attempts to
shutdown () or shutdownNow(). However this pool and
any ongoing processing are automatically terminated
upon program System.exit(int). Any program that
relies on asynchronous task processing to complete
before program termination should invoke

commonPool () .awaitQuiescence, before exit.

I
s
A

s - Returns:
A Lo .
ONI.Y 0“E 3 R the common pool instance

Since:

1.8

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Overview of the Common Fork-Join Pool
« A static common pool is available
& appropriate for most programs

 This pool’s used by any ForkJoin
Task that’s not submitted to a
specified pool within a process

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Overview of the Common Fork-Join Pool

« A static common pool is available
& appropriate for most programs

« It helps optimize resource utilization
since it's aware of which cores are
used globally within a process

Overview of the Common Fork- Jom Pool

A static common pool is available
& appropriate for most programs

« It helps optimize resource utilization
since it's aware of which cores are
used globally within a process.

« Goal is to maximize processor
core utilization via work-stealing

See earlier lessons on ™ 7he Java Fork-Join Pool Internals: Work Stealing”

Overview of the Common Fork-Join Pool

A static common pool is available
& appropriate for most programs

« It helps optimize resource utilization
since it's aware of which cores are
used globally within a process.

 This “global” vs “local” resource
management tradeoff is common
in computing & other domains

See blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

http://blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

Overview of the Common Fork-Join Pool

A static common pool is available
& appropriate for most programs BN .. [

 This pool is also used by the Java
parallel streams framework

< Pool of worker thl’eadg

See dzone.com/articles/common-fork-join-pool-and-streams

https://dzone.com/articles/common-fork-join-pool-and-streams

Overview of the Common Fork-Join Pool

A static common pool is available

. 8 /page\ = Task 1
& appropriate for most programs ,‘ e LaAsyne

(getStartPage())

i1 ‘ Task 2 ‘/ X «25 Task 3

/imgNum\ = /page\ &} /imgNum\ = /page\ &M
. thenComposeAsync
(crawlHyperLinks

.thenApplyAsync
(countImages (page))
.thenApply (List: :size) (page))

- This pool is also used by the Java \7 r/
parallel streams framework Yy sk i26

« & the Java completable / imgNﬂi;ﬁﬁfnciﬂgfqﬁ; 2g)/irngumz\,
futures framework :

Integer: :sum)

4 Pool of worker thread®

See dzone.com/articles/common-fork-join-pool-and-streams

https://dzone.com/articles/common-fork-join-pool-and-streams

Overview of the Common Fork-Join Pool
« By default the common fork-join pool has one less thread than the # of cores

ForkJoinPool makeCommonPool () {

parallelism = Runtime
.getRuntime ()
.availableProcessors() — 1;

Sets parallelism’ to three
on a quad-core processor

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html

Overview of the Common Fork-Join Pool
« By default the common fork-join pool has one less thread than the # of cores

Returns three on a quad-core processor

4 a2
System.out.println ;< ," ;‘ ,ﬁ
("The parallelism in| the" n n " "

+ "common fork-join|pool is "
+ ForkJoinPool
.getCommonPoolParallelism()) ;

See github.com/douglascraigschmidt/LivelLessons/blob/master/SearchForkJoin

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchForkJoin

Overview of the Common Fork-Join Pool
« By default the common fork-join pool has one less thread than the # of cores

The invoking thread, e.g., the main (UI)
thread, is also included in the pool

A program can therefore leverage all processor cores!

Overview of the Common Fork-Join Pool

« However, the default # of threads in the fork-join pool may be inadequate

\4 Pooj of worker th"ead/g

14

Overview of the Common Fork-Join Pool
« However, the default # of threads in the fork-join pool may be inadequate

 e.g., problems occur when blocking operations
are used in the common fork-join pool

J&

doug-circle.png dougs-small.jpg ironbound.jpg

.%-‘ 4 : ;

A = »

- ; ’ ol o

| G sl
kitten.png lil_doug.jpg robot.png uci.png

e.g., downloading more
images than # of cores

These problems may range from underutilization of processor cores to deadlock..

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically

16

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically

* By modifying a system property String desiredThreads = "10";
System.setProperty

("java.util.concurrent." +
"ForkJoinPool.common." +
"parallelism",
desiredThreads) ;

It's hard to estimate the total # of threads to set in the common fork-join pool

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically
* By modifying a system property String desiredThreads = "10";

+ Modifying this property affects ~SYSoon SSEFroperty

| . - ("java.util.concurrent." +
all common fork-join usage in " ForkJoinbeol common " +

a process! "parallelism",
desiredThreads) ;

18

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically
* By modifying a system property String desiredThreads = "10";
System. setProperty
("java.util.concurrent." +

"ForkJoinPool.common." +
"parallelism",

 This property can be changed desiredThreads) ;
only before the common fork-join —
pool is initialized

« It's initialized “on-demand”
the first time it's used

See en.wikipedia.org/wiki/Lazy initialization

https://en.wikipedia.org/wiki/Lazy_initialization

Overview of the Common Fork-Join Pool
« The common pool size can thus be expanded & contracted programmatically

« By modifying a system property String desiredThreads = "10";
System.setProperty

("java.util.concurrent." +
"ForkJoinPool.common." +
"parallelism",
desiredThreads) ;

Iz

Another approach is thus needed to increase the fork/join pool size automatically

Overview of the Common Fork-Join Pool
« The common pool size can thus be expanded & contracted programmatically

Interface ForkjoinPool.ManagedBlocker

» By using a ManagedBlocker Enclosing class:

ForkJoinPool

public static interface ForkJoinPool.ManagedBlocker

Interface for extending managed parallelism for tasks running in
ForkJoinPools.

A ManagedBlocker provides two methods. Method isReleasable()
must return true if blocking is not necessary. Method block() blocks
the current thread if necessary (perhaps internally invoking
isReleasable before actually blocking). These actions are performed
by any thread invoking
ForkJoinPool.managedBlock(ManagedBlocker). The unusual methods
in this API accommodate synchronizers that may, but don't usually,
block for long periods. Similarly, they allow more efficient internal
handling of cases in which additional workers may be, but usually are
not, needed to ensure sufficient parallelism. Toward this end,
implementations of method isReleasable must be amenable to
repeated invocation.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically

» By using a ManagedBlocker

« Temporarily add worker threads
to the common fork-join pool

22

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically

» By using a ManagedBlocker

« Useful when tasks wait on I/0O,
synchronizers, or blocking queues

ManageBlockers can only be used with the common fork-join pool..

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically

SupplierManagedBlocker<T> mb =
+ By using a ManagedBlocker new SupPllerManagedBlocker<>
(supplier) ;
ForkJoinPool .managedBlock (mb) ;
return mb.getResult () ;

« It's helpful to encapsulate the
ManagedBlocker mechanism

4 Pool of worker threa®®

See lesson on “ The Java Fork-Join Pool: Applying the ManagedBlocker Interface”

Overview of the Common Fork-Join Pool

« The common pool size can thus be expanded & contracted programmatically

» By using a ManagedBlocker

 The common ForkJoinPool reclaims
threads during periods of non-use

lpo (o \d
- ~ ol of ker thre?
& reinstates them on later use : pvor

25

End of Maximizing Processor
Core Utilization with the
Java Common Fork-Join Pool

26

