
Maximizing Processor Core Utilization 
with the Java Common Fork-Join Pool

Douglas C. Schmidt
    d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt 

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how the common fork-join pool
helps to maximize processor core utilization 

Learning Objectives in this Part of the Lesson
Common Fork-Join Pool



3

Overview of the 
Common Fork-Join Pool



4

• A static common pool is available 
& appropriate for most programs

  

Overview of the Common Fork-Join Pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool  

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html


5

• A static common pool is available 
& appropriate for most programs
• This pool’s used by any ForkJoin

Task that’s not submitted to a 
specified pool within a process

  

Overview of the Common Fork-Join Pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#commonPool  

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html


6

• A static common pool is available 
& appropriate for most programs
• This pool’s used by any ForkJoin

Task that’s not submitted to a 
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process

Overview of the Common Fork-Join Pool



7

• A static common pool is available 
& appropriate for most programs
• This pool’s used by any ForkJoin

Task that’s not submitted to a 
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.
• Goal is to maximize processor 

core utilization via work-stealing

Overview of the Common Fork-Join Pool

See earlier lessons on “The Java Fork-Join Pool Internals: Work Stealing”
 



8

• A static common pool is available 
& appropriate for most programs
• This pool’s used by any ForkJoin

Task that’s not submitted to a 
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.
• Goal is to maximize processor 

core utilization via work-stealing
• This “global” vs “local” resource

management tradeoff is common 
in computing & other domains

Overview of the Common Fork-Join Pool

See blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better
 

http://blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better


9

• A static common pool is available 
& appropriate for most programs
• This pool’s used by any ForkJoin

Task that’s not submitted to a 
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.

• This pool is also used by the Java 
parallel streams framework

  

See dzone.com/articles/common-fork-join-pool-and-streams 

Overview of the Common Fork-Join Pool

filter(not(this::urlCached))

collect(toList())

…

map(this::downloadImage)

flatMap(this::applyFilters)

https://dzone.com/articles/common-fork-join-pool-and-streams


10

• A static common pool is available 
& appropriate for most programs
• This pool’s used by any ForkJoin

Task that’s not submitted to a 
specified pool within a process

• It helps optimize resource utilization
since it’s aware of which cores are
used globally within a process.

• This pool is also used by the Java 
parallel streams framework
• & the Java completable 

futures framework

  See dzone.com/articles/common-fork-join-pool-and-streams 

Overview of the Common Fork-Join Pool
/page\ = 
  supplyAsync
   (getStartPage())

/imgNum\ = /page\
   .thenComposeAsync
     (crawlHyperLinks
       (page))

/imgNum\ = /page\ 
  .thenApplyAsync
    (countImages(page))
  .thenApply(List::size)

/imgNum1\.thenCombine(/imgNum2\, 
     (imgNum1, imgNum2) -> 
      Integer::sum)

Task 1

Task 2 Task 3

Task 4

https://dzone.com/articles/common-fork-join-pool-and-streams


11

• By default the common fork-join pool has one less thread than the # of cores

See docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#availableProcessors 

ForkJoinPool makeCommonPool() {
  ...
  parallelism = Runtime
    .getRuntime()
    .availableProcessors() – 1;
  ...

Overview of the Common Fork-Join Pool

Sets ‘parallelism’ to three 
on a quad-core processor

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html


12

• By default the common fork-join pool has one less thread than the # of cores

See github.com/douglascraigschmidt/LiveLessons/blob/master/SearchForkJoin

System.out.println
  ("The parallelism in the"       
   + "common fork-join pool is "
   + ForkJoinPool
       .getCommonPoolParallelism());

Overview of the Common Fork-Join Pool

ForkJoinPool makeCommonPool() {
  ...
  parallelism = Runtime
    .getRuntime()
    .availableProcessors() – 1;
  ...

Returns three on a quad-core processor

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchForkJoin


13

• By default the common fork-join pool has one less thread than the # of cores

A program can therefore leverage all processor cores!

Overview of the Common Fork-Join Pool

The invoking thread, e.g., the main (UI) 
thread, is also included in the pool



14

• However, the default # of threads in the fork-join pool may be inadequate
Overview of the Common Fork-Join Pool



15

• However, the default # of threads in the fork-join pool may be inadequate
• e.g., problems occur when blocking operations 

are used in the common fork-join pool

These problems may range from underutilization of processor cores to deadlock..

e.g., downloading more 
images than # of cores

Overview of the Common Fork-Join Pool



16

• The common pool size can thus be expanded & contracted programmatically

  

Overview of the Common Fork-Join Pool



17

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
  

String desiredThreads = "10"; 
System.setProperty
  ("java.util.concurrent." +
   "ForkJoinPool.common." +
   "parallelism", 
   desiredThreads);

Overview of the Common Fork-Join Pool

It’s hard to estimate the total # of threads to set in the common fork-join pool



18

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
• Modifying this property affects 

all common fork-join usage in 
a process!

  

Overview of the Common Fork-Join Pool

String desiredThreads = "10"; 
System.setProperty
  ("java.util.concurrent." +
   "ForkJoinPool.common." +
   "parallelism", 
   desiredThreads);



19

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
• Modifying this property affects 

all common fork-join usage in 
a process!

• This property can be changed 
only before the common fork-join 
pool is initialized 
• It’s initialized “on-demand”

the first time it’s used

  

Overview of the Common Fork-Join Pool

String desiredThreads = "10"; 
System.setProperty
  ("java.util.concurrent." +
   "ForkJoinPool.common." +
   "parallelism", 
   desiredThreads);

See en.wikipedia.org/wiki/Lazy_initialization

https://en.wikipedia.org/wiki/Lazy_initialization


20

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
  

Overview of the Common Fork-Join Pool

String desiredThreads = "10"; 
System.setProperty
  ("java.util.concurrent." +
   "ForkJoinPool.common." +
   "parallelism", 
   desiredThreads);

Another approach is thus needed to increase the fork/join pool size automatically



21See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
• By using a ManagedBlocker

  

Overview of the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html


22

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
• By using a ManagedBlocker
• Temporarily add worker threads 

to the common fork-join pool

  

Overview of the Common Fork-Join Pool



23

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
• By using a ManagedBlocker
• Temporarily add worker threads 

to the common fork-join pool
• Useful when tasks wait on I/O, 

synchronizers, or blocking queues

  

Overview of the Common Fork-Join Pool

ManageBlockers can only be used with the common fork-join pool..



24

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
• By using a ManagedBlocker
• Temporarily add worker threads 

to the common fork-join pool
• Useful when tasks wait on I/O, 

synchronizers, or blocking queues
• It’s helpful to encapsulate the

ManagedBlocker mechanism

Overview of the Common Fork-Join Pool

SupplierManagedBlocker<T> mb =
  new SupplierManagedBlocker<>
   (supplier);
...
ForkJoinPool.managedBlock(mb);
return mb.getResult();

See lesson on “The Java Fork-Join Pool: Applying the ManagedBlocker Interface”



25

• The common pool size can thus be expanded & contracted programmatically
• By modifying a system property
• By using a ManagedBlocker
• Temporarily add worker threads 

to the common fork-join pool
• Useful when tasks wait on I/O, 

synchronizers, or blocking queues
• It’s helpful to encapsulate the

ManagedBlocker mechanism
• The common ForkJoinPool reclaims 

threads during periods of non-use 
& reinstates them on later use

Overview of the Common Fork-Join Pool



26

End of Maximizing Processor 
Core Utilization with the 

Java Common Fork-Join Pool


