Worker Threads

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand how the Java fork-join framework

. Fork-Join Pool
implements worker threads
Deque Deque Deque
Sub-Task, ,
Sub-Task, 5 Sub-Task; 3
Sub-Task, 4, =i Sub-Task; 4

See theboreddev.com/the-unfairly-unknown-forkjoinpool

https://theboreddev.com/the-unfairly-unknown-forkjoinpool

Worker Threads in
a Java Fork-Join Pool

Worker Threads in a Java Fork-Join Pool

new tasks onto a fork-join pool’s

shared queued

« Non-ForkJoinTask clients insert WorkQueue WorkQueue WorkQueue
Sub-Task; ,
Sub-Task; 5
Sub-Task; 5 Sub-Tasks 3
Sub-Task; 4 | Sub-Task, 4

Clients

ForkJoinPool

Shared Queue

submit ()

v

-

“take ()

Worker Threads in a Java Fork-Join Pool
* Non-ForkJoinTask clients insert WorkQueue WorkQueue WorkQueue

new tasks onto a fork-join pool's [q ©.o | |
shared queued I I
. W Sub-Task;
« This shared queue feeds “work- i
stealing” (de)queues managed | Sub-Taskis I I Sub-Tasks s
by worker threads Sub-Task, ,

ForkJoinPool

Shared Queue

Clients

n
-

submit ()

“take ()

S
4 Pool of worker threa®

See upcoming lessons on “ 7he Java Fork-Join Pool: Work Stealing’

Worker Threads in a Java Fork-Join Pool

« Each worker thread in a fork-join
pool runs a loop that scans for
(sub-)tasks to execute

Worker Threads in a Java Fork-Join Pool

« Each worker thread in a fork-join
pool runs a loop that scans for
(sub-)tasks to execute

» The goal is to keep the worker
threads as busy as possible!

Worker Threads in a Java Fork-Join Pool

« A worker thread has a “double- WorkQueue WorkQueue WorkQueue

n \\ I
ended queue” (aka “deque”) that [g
serves as its main source of tasks
Sub-Task; 5
Sub-Task; 5 Sub-Task; 5
Sub-Task, 4

See en.wikipedia.org/wiki/Double-ended queue

https://en.wikipedia.org/wiki/Double-ended_queue

Worker Threads in a Java Fork-Join Pool

« A worker thread has a “double- WorkQueue WorkQueue WorkQueue
ended queue” (aka “deque”) that

]) Sub-Task; ,
serves as its main source of tasks
Sub-Task
. Implemented by WorkQueue -
Sub-Task; 5 Sub-Task; 5
¢ © WorkQueue
m © WorkQueue(ForkJoinWorkerThread, int) Sub-Task1_4 B Sub-Task3_4
m o peek() ForkJoinTask<?>? 2
‘m < poll(ForkJoinPool) ForkJoinTask<?>?
‘m push(ForkJoinTask<?>, ForkJoinPool, boolean) void
m o tryPoll() ForkJoinTask<?>?

See java8/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repo1.maven.org/maven2/net.sourceforge.streamsupport/streamsupport/1.2.2/java8/util/concurrent/ForkJoinPool.java

Worker Threads in a Java Fork-Join Pool

 If a task run by a worker thread WorkQueue WorkQueue WorkQueue

calls fork() the new task s pushed [g p Taek.

on the head of the worker’s deque
Sub-Task; 5
Sub-Task; 4 Sub-Tasks 3
Sub-Task; 4 Sub-Task; 4 Sub-Task; 4

See gee.cs.oswego.edu/dl/papers/fij.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Worker Threads in a Java Fork-Join Pool

If a task run by a worker thread WorkQueue WorkQueue WorkQueue
calls fork() the new task is pushed

, Sub-Task; ,
on the head of the worker’s deque
. Sub-Task; 5
« A worker thread processes its
deque in LIFO order Sub-Task 5 Sub-Task; 5
Sub-Task, 4 Sub-Task; 4

See en.wikipedia.org/wiki/Stack (abstract data type)

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Worker Threads in a Java Fork-Join Pool

 If a task run by a worker thread WorkQueue WorkQueue WorkQueue
calls fork() the new task is pushed
on the head of the worker’s deque

« A worker thread processes its
deque in LIFO order, i.e. Sub-Task 5 Sub-Task; 5

« A task pop’d from the head of | Sub-Taski, Sub-Tasks
a deque is run to completion |

SUb‘TaSk1 A1

SUb'TaSk1 2

See en.wikipedia.org/wiki/Run to completion scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

Worker Threads in a Java Fork-Join Pool
 If a task run by a worker thread WorkQueue WorkQueue WorkQueue

calls fork() the new task |s’ pushed Sub-Task, -
on the head of the worker’s deque
. Sub-Task; 5
« A worker thread processes its
deque in LIFO order, i.e. Sub-Taski 5 Sub-Task; 5
Sub-Task, 4 = | Sub-Task; 4

* join() “pitches in” to pop
& execute (sub-)tasks

Worker Threads in a Java Fork-Join Pool
 If a task run by a worker thread WorkQueue WorkQueue WorkQueue

calls fork() the new task |s’ pushed Sub-Task, -
on the head of the worker’s deque
. Sub-Task; 5
« A worker thread processes its
deque in LIFO order, i.e. Sub-Taski 5 Sub-Task; 5
Sub-Task, 4 Sub-Task; 4

* join() “pitches in” to pop
& execute (sub-)tasks

“Collaborative Jiffy Lube” model of processing!

Worker Threads in a Java Fork-Join Pool
 If a task run by a worker thread WorkQueue WorkQueue WorkQueue

calls fork() the new task s pushed [g, Task, .
on the head of the worker’s deque

Sub-Task; 5

Sub-Task; 4 Sub-Task; 3
 LIFO order improves locality of | Sub-Task,,

R SUb'TaSk34

reference & cache performance

See en.wikipedia.org/wiki/Locality of reference

https://en.wikipedia.org/wiki/Locality_of_reference

End of Java Fork-Join

Framework Internals:
Worker Threads

16

