
Overview of the Java
Fork-Join Framework

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how the Java fork-join framework processes tasks in parallel
Learning Objectives in this Part of the Lesson

See www.baeldung.com/java-fork-join

http://www.baeldung.com/java-fork-join

3

Overview of the Java
Fork-Join Pool

Computation Model

4

• The fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

Overview of the Java Fork-Join Pool Computation Model

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

5

• The fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism
• Its parallel computing engine is used by many higher-level frameworks

Overview of the Java Fork-Join Pool Computation Model

See www.infoq.com/interviews/doug-lea-fork-join

filter(not(this::urlCached))

collect(toFuture())

map(this::downloadImageAsync)

flatMap(this::applyFiltersAsync)

collect(toList())

Parallel Streams…

filter(not(this::urlCached))

map(this::downloadImage)

flatMap(this::applyFilters)

Completable Futures…

ForkJoinPool

http://www.infoq.com/interviews/doug-lea-fork-join

6

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”

See en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Overview of the Java Fork-Join Pool Computation Model

Solve(problem)
 if (problem is small enough)
 solve problem directly
 (sequential algorithm)
 else
 split problem into independent parts
 fork new sub-tasks to solve each part
 join all sub-tasks
 compose result from sub-results

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

7

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”

Overview of the Java Fork-Join Pool Computation Model

Solve(problem)
 if (problem is small enough)
 solve problem directly
 (sequential algorithm)
 else
 split problem into independent parts
 fork new sub-tasks to solve each part
 join all sub-tasks
 compose result from sub-results

8

Overview of the Java Fork-Join Pool Computation Model

Solve(problem)
 if (problem is small enough)
 solve problem directly
 (sequential algorithm)
 else
 split problem into independent parts
 fork new sub-tasks to solve each part
 join all sub-tasks
 compose result from sub-results

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”

9

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

See en.wikipedia.org/wiki/Fork-join_model

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model

10

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• A task creates sub-tasks

by fork()’ing

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Ideally these sub-tasks
split evenly & efficiently

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

11

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• A task creates sub-tasks

by fork()’ing

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

A (sub-)task only splits itself into (more) sub-
tasks if the work is sufficiently large at that level

12

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

13

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Implemented by fork-join framework, Java
execution environment, OS, & hardware

14

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Sub-tasks run in parallel

on different cores

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

15

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Sub-tasks run in parallel

on different cores

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Performance typically increases as the # of cores increases

16

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Sub-tasks run in parallel

on different cores
• Sub-tasks can also run

concurrently in different
threads on a single core

Overview of the Java Fork-Join Pool Computation Model

This configuration may not enhance performance unless sub-tasks are I/O bound

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

17

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results

 Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

join() join() join() join()

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

18

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a

sub-task to finish

join() join() join() join()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#join

Overview of the Java Fork-Join Pool Computation Model

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

19

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a

sub-task to finish

join() join() join() join()

See upcoming lesson on “The Java Fork-Join Pool: Key Methods in ForkJoinTask”

Overview of the Java Fork-Join Pool Computation Model

join() also plays a role in executing sub-tasks

20

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a

sub-task to finish
• & merges the results

join() join()

Overview of the Java Fork-Join Pool Computation Model

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

join() join() join() join()

21

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a

sub-task to finish
• & merges the results

join()

join() join() join() join()

Overview of the Java Fork-Join Pool Computation Model

join() join()

Partial
results

Final result
Partial (sub-)results are merged into a final result

22

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a

sub-task to finish
• join() occurs in a single

thread at each level

join()

join() join() join() join()

Overview of the Java Fork-Join Pool Computation Model

“Parent”

“Children”

As a result, there’s typically no need for synchronizers during the joining phase

join() join()

23

End of Overview of the
Java Fork-Join Framework

