
Overview of the Java 
Fork-Join Framework

Douglas C. Schmidt
    d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt 

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how the Java fork-join framework processes tasks in parallel
Learning Objectives in this Part of the Lesson

See www.baeldung.com/java-fork-join 

http://www.baeldung.com/java-fork-join
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Overview of the Java 
Fork-Join Pool 

Computation Model
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• The fork-join pool provides a high performance, fine-grained task execution 
framework for Java data parallelism

Overview of the Java Fork-Join Pool Computation Model

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
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• The fork-join pool provides a high performance, fine-grained task execution 
framework for Java data parallelism
• Its parallel computing engine is used by many higher-level frameworks

Overview of the Java Fork-Join Pool Computation Model

See www.infoq.com/interviews/doug-lea-fork-join

filter(not(this::urlCached))

collect(toFuture())

map(this::downloadImageAsync)

flatMap(this::applyFiltersAsync)

collect(toList())

Parallel Streams…

filter(not(this::urlCached))

map(this::downloadImage)

flatMap(this::applyFilters)

Completable Futures…

ForkJoinPool

http://www.infoq.com/interviews/doug-lea-fork-join
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer” 

See en.wikipedia.org/wiki/Divide_and_conquer_algorithm  

Overview of the Java Fork-Join Pool Computation Model

Solve(problem) 
  if (problem is small enough) 
    solve problem directly 
      (sequential algorithm) 
  else 
    split problem into independent parts 
    fork new sub-tasks to solve each part 
    join all sub-tasks 
    compose result from sub-results

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer” 

Overview of the Java Fork-Join Pool Computation Model

Solve(problem) 
  if (problem is small enough) 
    solve problem directly 
      (sequential algorithm) 
  else 
    split problem into independent parts 
    fork new sub-tasks to solve each part 
    join all sub-tasks 
    compose result from sub-results
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Overview of the Java Fork-Join Pool Computation Model

Solve(problem) 
  if (problem is small enough) 
    solve problem directly 
      (sequential algorithm) 
  else 
    split problem into independent parts 
    fork new sub-tasks to solve each part 
    join all sub-tasks 
    compose result from sub-results

• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer” 
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
  

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

See en.wikipedia.org/wiki/Fork-join_model

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• A task creates sub-tasks

by fork()’ing
  

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Ideally these sub-tasks 
split evenly & efficiently

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• A task creates sub-tasks

by fork()’ing
  

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

A (sub-)task only splits itself into (more) sub-
tasks if the work is sufficiently large at that level
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel 
  

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel 
  

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM) 

Threading & Synchronization Packages

Implemented by fork-join framework, Java 
execution environment, OS, & hardware
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel 
• Sub-tasks run in parallel 

on different cores

  

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel 
• Sub-tasks run in parallel 

on different cores

  

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Performance typically increases as the # of cores increases 
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel 
• Sub-tasks run in parallel 

on different cores
• Sub-tasks can also run 

concurrently in different 
threads on a single core

  

Overview of the Java Fork-Join Pool Computation Model

This configuration may not enhance performance unless sub-tasks are I/O bound

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()



17

• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results

  Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

join() join() join() join()

Overview of the Java Fork-Join Pool Computation Model

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()
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Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a 

sub-task to finish
  

join() join() join() join()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#join

Overview of the Java Fork-Join Pool Computation Model

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
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Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a 

sub-task to finish
  

join() join() join() join()

See upcoming lesson on “The Java Fork-Join Pool: Key Methods in ForkJoinTask”

Overview of the Java Fork-Join Pool Computation Model

join() also plays a role in executing sub-tasks
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• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a 

sub-task to finish
• & merges the results

  

join() join()

Overview of the Java Fork-Join Pool Computation Model

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

join() join() join() join()
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Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a 

sub-task to finish
• & merges the results

  

join()

join() join() join() join()

Overview of the Java Fork-Join Pool Computation Model

join() join()

Partial 
results

Final result
Partial (sub-)results are merged into a final result
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Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

• The fork-join pool supports a style of parallel programming optimized to solve 
problems by “divide & conquer”, e.g.
• Splitting a task into sub-tasks
• Applying sub-tasks in parallel
• Combining sub-task results
• join() “waits” for a 

sub-task to finish
• join() occurs in a single 

thread at each level
  

join()

join() join() join() join()

Overview of the Java Fork-Join Pool Computation Model

“Parent”

“Children”

As a result, there’s typically no need for synchronizers during the joining phase

join() join()
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End of Overview of the
Java Fork-Join Framework


