
Common Programming Hazards
with Java Parallel Streams

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of Java streams, e.g.,
• Fundamentals of streams
• Benefits of streams
• Creating a stream
• Aggregate operations in a stream
• Applying streams in practice
• Sequential vs. parallel streams
• Common programming hazards

of parallel streams

Input x

Output f(x)

Output g(f(x))

Stream source

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

3

Common Programming
Hazards for Parallel Streams

4

• Ideally, a behavior’s output in a stream
depends only on its input arguments

Aggregate operation (behavior f)

See en.wikipedia.org/wiki/Side_effect_(computer_science)

Input x

Output f(x)

Common Programming Hazards for Parallel Streams
…

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

5

• Ideally, a behavior’s output in a stream
depends only on its input arguments

Aggregate operation (behavior f)

Output f(x)String capitalize(String s) {
 if (s.length() == 0)
 return s;
 return s.substring(0, 1)
 .toUpperCase()
 + s.substring(1)
 .toLowerCase();

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Common Programming Hazards for Parallel Streams
…

Input x

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

6

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams

See en.wikipedia.org/wiki/Race_condition#Software

Race conditions arise in software when an
application depends on the sequence or

timing of threads for it to operate properly

Common Programming Hazards for Parallel Streams
…

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

https://en.wikipedia.org/wiki/Race_condition

7

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
}

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.
long factorial(long n) {
 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
}

Common Programming Hazards for Parallel Streams

A buggy attempt to compute
the ‘nth’ factorial in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

8

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
} long factorial(long n) {

 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
}

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.

Common Programming Hazards for Parallel Streams

Shared mutable state

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

9

long factorial(long n) {
 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
} Generate a range

of values from 1..n

rangeClosed()

parallel()

forEach()

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
}

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.

Common Programming Hazards for Parallel Streams

10

long factorial(long n) {
 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
}

Run in parallel
rangeClosed()

parallel()

forEach()

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
}

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.

Common Programming Hazards for Parallel Streams

11

long factorial(long n) {
 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
}

Multiply the running
total w/the latest value

rangeClosed()

parallel()

forEach()

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
}

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.

Common Programming Hazards for Parallel Streams

12

long factorial(long n) {
 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
}

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
}

Beware of race conditions!!!

See en.wikipedia.org/wiki/Race_condition#Software

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.

Common Programming Hazards for Parallel Streams

https://en.wikipedia.org/wiki/Race_condition

13See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

long factorial(long n) {
 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
}

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
}

Beware of inconsistent memory visibility

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.

Common Programming Hazards for Parallel Streams

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

14In Java you must avoid these hazards, i.e., the compiler & JVM won’t save you..

long factorial(long n) {
 Total t = new Total();
 LongStream
 .rangeClosed(1, n)
 .parallel()
 .forEach(t::mult);
 return t.mTotal;
}

class Total {
 public long mTotal = 1;

 public void mult(long n)
 { mTotal *= n; }
}

Only you can prevent
concurrency hazards!

• Ideally, a behavior’s output in a stream
depends only on its input arguments
• Behaviors with side-effects can incur

race conditions in parallel streams, e.g.

Common Programming Hazards for Parallel Streams

15

End of Common
Programming Hazards of

Java Parallel Streams

