
Comparing Java Sequential Streams
with Java Parallel Streams

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of Java streams, e.g.,
• Fundamentals of streams
• Benefits of streams
• Creating a stream
• Aggregate operations in a stream
• Applying streams in practice
• Sequential vs. parallel streams

Input x

Output f(x)

Output g(f(x))

Stream source

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

See radar.oreilly.com/2015/02/java-8-streams-api-and-parallelism.html

http://radar.oreilly.com/2015/02/java-8-streams-api-and-parallelism.html

3

Comparing Sequential
vs. Parallel Streams

4

• Stream operations run sequentially
Comparing Sequential vs. Parallel Streams

stream()

Aggregate operation (behavior f)

Aggregate operation (behavior g)

See docs.oracle.com/javase/tutorial/collections/streams

We’ll cover sequential streams first

…

http://docs.oracle.com/javase/tutorial/collections/streams

5

• Stream operations run sequentially or in parallel

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Comparing Sequential vs. Parallel Streams

parallelStream()

Aggregate operation (behavior f)

Aggregate operation (behavior g)
We’ll cover parallel streams later

…

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

6

• A parallel stream splits its data into multiple
chunks & uses the common fork-join pool to
process these chunks independently

Comparing Sequential vs. Parallel Streams

Aggregate operation (behavior f)

Aggregate operation (behavior g)

See dzone.com/articles/common-fork-join-pool-and-streams

…

parallelStream()

https://dzone.com/articles/common-fork-join-pool-and-streams

7

• Each worker thread in a fork-join
pool runs a loop that scans for
(sub-)tasks to execute

Comparing Sequential vs. Parallel Streams

8

• Each worker thread in a fork-join
pool runs a loop that scans for
(sub-)tasks to execute
• The goal is to keep the worker

threads as busy as possible!

Comparing Sequential vs. Parallel Streams

9

• Each worker thread in a fork-join
pool runs a loop that scans for
(sub-)tasks to execute
• The goal is to keep the worker

threads as busy as possible!
• To maximize core utilization, idle

worker threads “steal” work from
the tail of busy threads’ deques

Comparing Sequential vs. Parallel Streams

See www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

http://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf

10

• A parallel stream can often be much more
efficient & scalable than a sequential stream

Comparing Sequential vs. Parallel Streams

Aggregate operation (behavior f)

Aggregate operation (behavior g)

…

parallelStream()
Starting SearchStreamGangTest

 351 msecs needed to run SearchWithParallelStreamPhrases
 353 msecs needed to run SearchWithParallelStreams
 375 msecs needed to run SearchWithParallelStreamInputs
 377 msecs needed to run SearchWithCompletableFuturesPhrases
 460 msecs needed to run SearchWithParallelSpliterator
 469 msecs needed to run SearchWithCompletableFuturesInputs
 485 msecs needed to run SearchWithForkJoin
 1555 msecs needed to run SearchWithSequentialLoops
 2566 msecs needed to run SearchWithSequentialStreams
 Ending SearchStreamGangTest

Tests conducted on a 10-core MacBook Pro with 64 Gbytes of RAM

11

• A parallel stream can often be much more
efficient & scalable than a sequential stream
• However, certain conditions must apply

for a parallel stream to be a “win”!

Comparing Sequential vs. Parallel Streams

See on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

N
hilo

lo

hi

Q
Ideal

The “NQ” model:
• N is the # of data elements to

process per thread
• Q quantifies how CPU-intensive the

processing is

https://on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

12

End of Comparing
Java Sequential Streams

with Java Parallel Streams

