
Visualizing Java Streams in Action

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand Java streams structure &

functionality, e.g.
• Fundamentals of streams
• Three streams phases
• Operations that create a stream
• Aggregate operations in a stream
• Visualizing streams in action

3

Learning Objectives in this Part of the Lesson
• Understand Java streams structure &

functionality, e.g.
• Fundamentals of streams
• Three streams phases
• Operations that create a stream
• Aggregate operations in a stream
• Visualizing streams in action
• Be aware of how Java streams

work in practice

Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

4

Visualizing Streams
in Action

5

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

Aggregate operation (behavior f)

Aggregate operation (behavior g)

See en.wikipedia.org/wiki/Pipeline_(software)

Input x

Output f(x)

Output g(f(x))

Aggregate operation (behavior h)

Output h(g(f(x)))

Visualizing Streams in Action

https://en.wikipedia.org/wiki/Pipeline_(software)

6See en.wikipedia.org/wiki/Water_filter#Point-of-use_filters

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Input x

Output f(x)

Output g(f(x))

Aggregate operation (behavior h)

Output h(g(f(x)))

Visualizing Streams in Action

Each aggregate operation in the pipeline
can filter and/or transform the stream.

https://en.wikipedia.org/wiki/Water_filter

7See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

8

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Array of names

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

9

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

10

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

11

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

12

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

13

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

map(this::capitalize)

Visualizing Streams in Action

Array of names

14

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

15

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

16

• Streams enhance flexibility by forming a “processing pipeline” that composes
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Visualizing Streams in Action

Array of names

17

How Java Streams
Processing Works in Practice

18

• The “physical” processing of a stream differs from the “logical” model

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

How Java Streams Processing Works in Practice

Array of names

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

It may appear that each “row” of data is processed from “left to right”

https://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html

19

• The “physical” processing of a stream differs from the “logical” model

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)
Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

How Java Streams Processing Works in Practice

Array of names

However, each element is actually “pulled” from the source thru each aggregate operation

This implementation is much more efficient & supports “short-circuit” operations

20

End of Visualizing
Java Streams in Action

