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Learning Objectives in this Part of the Lesson
• Understand Java streams structure & 

functionality, e.g.
• Fundamentals of streams
• Three streams phases
• Operations that create a stream
• Aggregate operations in a stream
• Visualizing streams in action
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Learning Objectives in this Part of the Lesson
• Understand Java streams structure & 

functionality, e.g.
• Fundamentals of streams
• Three streams phases
• Operations that create a stream
• Aggregate operations in a stream
• Visualizing streams in action
• Be aware of how Java streams

work in practice
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Visualizing Streams 
in Action
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• Streams enhance flexibility by forming a “processing pipeline” that composes 
multiple aggregate operations together

Aggregate operation (behavior f)

Aggregate operation (behavior g)

See en.wikipedia.org/wiki/Pipeline_(software)

Input x

Output f(x)

Output g(f(x))

Aggregate operation (behavior h)

Output h(g(f(x)))

Visualizing Streams in Action

https://en.wikipedia.org/wiki/Pipeline_(software)
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• Streams enhance flexibility by forming a “processing pipeline” that composes 
multiple aggregate operations together

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Input x

Output f(x)

Output g(f(x))

Aggregate operation (behavior h)

Output h(g(f(x)))

Visualizing Streams in Action

Each aggregate operation in the pipeline 
can filter and/or transform the stream.

https://en.wikipedia.org/wiki/Water_filter
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• Streams enhance flexibility by forming a “processing pipeline” that composes 
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)
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Visualizing Streams in Action

Array of names

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12


8

• Streams enhance flexibility by forming a “processing pipeline” that composes 
multiple aggregate operations together
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• Streams enhance flexibility by forming a “processing pipeline” that composes 
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• Streams enhance flexibility by forming a “processing pipeline” that composes 
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How Java Streams 
Processing Works in Practice
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• The “physical” processing of a stream differs from the “logical” model
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How Java Streams Processing Works in Practice

Array of names

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz 

It may appear that each “row” of data is processed from “left to right”

https://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html
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• The “physical” processing of a stream differs from the “logical” model
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Array of names

However, each element is actually “pulled” from the source thru each aggregate operation

This implementation is much more efficient & supports “short-circuit” operations
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End of Visualizing 
Java Streams in Action


