
Understanding Java Streams
Common Aggregate Operations

Douglas C. Schmidt
    d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt 

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand Java streams structure & 

functionality, e.g.
• Fundamentals of streams
• Three streams phases
• Operations that create a stream
• Aggregate operations in a stream

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Input x

Output f(x)

Output g(f(x))

Stream source



3

Java Streams
Aggregate Operations 



4

• An aggregate operation performs a behavior 
on elements in a stream

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations

A behavior is implemented by a lambda expression or 
method reference corresponding to a functional interface

See blog.indrek.io/articles/java-8-behavior-parameterization

Stream source

https://blog.indrek.io/articles/java-8-behavior-parameterization/


5

• An aggregate operation performs a behavior 
on elements in a stream

Aggregate operation (behavior f)
Input x

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12 

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
            (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

Stream
<String>

Stream
<String>

“horatio” “Hamlet”

“Horatio” “Hamlet”Method reference

Java Streams Aggregate Operations
Stream source

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12


6

• An aggregate operation performs a behavior 
on elements in a stream
• Some aggregate operations perform

behaviors on all elements in a stream
• e.g., map(), filter(), forEach(), etc.

Java Streams Aggregate Operations



7

• An aggregate operation performs a behavior 
on elements in a stream
• Some aggregate operations perform

behaviors on all elements in a stream
• Other aggregate operations only perform

behaviors on some elements in a stream
• e.g., limit(), takeWhile(), dropWhile(),

anyMatch(), etc.

Java Streams Aggregate Operations



8

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

See en.wikipedia.org/wiki/Pipeline_(software)

https://en.wikipedia.org/wiki/Pipeline_(software)


9

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

The output of one aggregate operation can be input into the next one in the stream.



10

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
          (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

Java streams supports pipelining of aggregate operations via “fluent interfaces”.

See en.wikipedia.org/wiki/Fluent_interface

https://en.wikipedia.org/wiki/Fluent_interface


11

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
          (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

A factory method that creates a stream from an array of elements

See upcoming lessons on “Stream Creation Operations”



12

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
          (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

An aggregate operation that returns a stream 
containing only elements matching the predicate

See upcoming lessons on “Stream Intermediate Operations”



13

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
          (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

An aggregate operation that returns a stream consisting 
of results of applying a function to elements of this stream

See upcoming lessons on “Stream Intermediate Operations”



14

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
          (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

An aggregate operation that returns a stream 
consisting of results sorted in the natural order

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html


15

• Aggregate operations can be composed
to form a pipeline of processing phases

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
          (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

An aggregate operation that performs an action on each element of the stream

See upcoming lessons on “Stream Terminal Operations”



16

• Java streams iterate internally (& invisibly) 
between aggregate operations

Aggregate operation (behavior f)
Input x

Java Streams Aggregate Operations
Stream source

Aggregate operation (behavior g)

Output f(x)

Aggregate operation (behavior h)

Output g(f(x))

Stream
  .of("horatio",
      "laertes",
      "Hamlet", ...)
  .filter(s -> toLowerCase
          (s.charAt(0)) == 'h') 
  .map(this::capitalize)
  .sorted()
  .forEach(System.out::println);

See www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators

Internal iteration enhances opportunities for transparent 
optimization & incurs fewer accidental complexities

http://www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators


17

• In contrast, collections are iterated explicitly using loops and/or iterators.
Java Streams Aggregate Operations

List<String> l = new LinkedList<>
  (List.of("horatio", "laertes", "Hamlet", ...));

for (int i = 0; i < l.size();) 
  if (toLowerCase(l.get(i).charAt(0)) != 'h’) 
    l.remove(i);
  else { 
    l.set(i, capitalize(l.get(i))); i++; 
  }

Collections.sort(l);

for (String s : l) System.out.println(s);

See upcoming lessons on “External vs. Internal Iterators in Java” 

Explicit control constructs yield 
more opportunities for accidental 

complexities & are hard to optimize



18

End of Understanding 
Java Streams Common 
Aggregate Operations


